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Abstract 

In critical locations such as urban or mountainous areas satellite navigation is difficult, 

above all due to the signal blocking problem; for this reason satellite systems are often 

integrated with inertial sensors, owing to their complementary features. A common 

configuration includes a GPS receiver and a high-precision inertial sensor, able to 

provide navigation information during GPS gaps. 

Nowadays the low cost inertial sensors with small size and weight and poor accuracy 

are developing and their use as part of integrated navigation systems in difficult 

environments is under investigation. On the other hand the recent enhancement of 

GLONASS satellite system suggests the combined use with GPS in order to increase the 

satellite availability as well as position accuracy; this can be especially useful in places 

with lack of GPS signals. 

This study is to assess the effectiveness of the integration of GPS/GLONASS with low 

cost inertial sensors in pedestrian and vehicular urban navigation and to investigate 

methods to improve its performance. 

The Extended Kalman filter is used to merge the satellite and inertial information and 

the loosely and tightly coupled integration strategies are adopted; their performances 

comparison in difficult areas is one of the main objectives of this work. Generally the 

tight coupling is more used in urban or natural canyons because it can provide an 

integrated navigation solution also with less than four satellites (minimum number of 

satellites necessary for a GPS only positioning); the inclusion of GLONASS satellites in 

this context may change significantly the role of loosely coupling in urban navigation.  

In this work pseudorange and Doppler measurements are processed in single point 

mode; hence no differential processing is performed and no base station is necessary. 

For bounding the MEMS INS errors during GPS/GLONASS outages, the use of motion 

constraints is introduced and evaluated. To carry out the analysis a complete navigation 

software has been developed in Matlab environment. 

The results show that the integration of GPS/INS provides satisfying performance only 

in good visibility conditions in both loose and tight architectures, while during GPS 

outages (longer than few seconds) very large errors are experienced; including 

GLONASS in GPS/INS integration produces significant solution improvements. As 

expected the tight integration shows better performance during GNSS outages, but the 

results obtained with GPS/INS integration in tight architecture and 
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GPS/GLONASS/INS integration in loose approach are often similar, suggesting the use 

of the latter configuration owing to its relatively simple implementation. The motion 

constraints provide remarkable enhancements of the navigation solution, with RMS 

position error of a few meters in difficult urban canyons for both loose and tight 

architectures. 
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Chapter 1  Introduction 

In this chapter an overview of the background of this research is provided, i.e. the 

importance and the limitations of the satellite navigation, the reason of the integration 

with other sensors, the difficulties of the navigation in urban environment, the 

requirements of pedestrian and vehicular navigation. 

Then an overview on the previous work related to the research topic and their 

limitations is provided. 

Then the objective of this research is discussed, i.e. investigating the performance of the 

integration of GNSS systems and INS low-cost sensors in urban navigation. 

Finally the outline of this thesis is provided. 

1.1 Background 

Nowadays the global satellite navigation systems (GNSS) play a fundamental role in 

many areas as civil aviation, maritime and land navigation or geomatics, owing to the 

ability to provide worldwide, tridimensional, all weather position, velocity and time 

synchronization. 

At this time GPS system is the more widespread GNSS system and the only fully 

operational; its main quality is the ability to provide position (besides velocity and time 

synchronization) with time-invariant accuracy (Lachapelle 1997); the attainable 

accuracy varies from meter to centimeter level, depending on the observables and 

methods employed (Petovello 2003). The best performance can be obtained with carrier 

phase observable and differential techniques, involving two or more receivers; a radio 

modem is necessary to link the receivers in case of real-time positioning. 

A real-time positioning, without requiring extra infrastructure (other receivers or radio 

modem) can be achieved using pseudorange observable in single point mode, yielding 

an accuracy of about 10 meters in good visibility condition (Conley et al. 2006). 

A drawback of GPS in general is the necessity to have a good light-of-sight visibility to 

the satellites. Signal-degraded environments as urban areas are critical locations for 

satellite navigation; buildings block many of the signals, thus reducing satellite 

availability and weakening observation geometry, with the extreme case being solution 

unavailability. Buildings can also reflect the signals causing multipath phenomenon, 

introducing large measurement errors. For these reasons, standalone GPS is not 

adequate to guarantee a continuous and accurate navigation in urban environment. 
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In these scenarios GPS system must be augmented with other sensors to allow an 

accurate and continuous navigation. 

The recent enhancement of GLONASS satellite system suggests the combined use with 

GPS in order to increase the satellite availability, especially in places with lack of GPS 

signals; also GLONASS measurements are affected by blocking and multipath 

problems in urban areas. 

Inertial sensors are well suited for integration with GNSS systems owing to their 

complementary features. 

Unlike GNSS systems, the inertial navigation systems (INS) are self-contained and their 

performance is not degraded in environment as urban canyons, being independent of 

external electro-magnetic signals. Moreover INS are more accurate in the short term and 

they can supply data continuously with very high rate (at several hundred Hz, whereas 

GNSS receivers typically updates position and velocity at 1 to 20 Hz); INS can also 

provide attitude information. 

The main drawback of an INS is the degradation of its performance with time; in order 

to bound the errors to an acceptable level, regular updates are necessary and GNSS 

measurements can be used to this purpose. 

A common configuration includes a GPS receiver and an high-end INS, able to provide 

navigation solution during GPS gaps; the use of high-end INS is generally confined to 

only high accuracy navigation and geo-referencing applications, owing to their price 

and size. 

The recent advances in MEMS technology has made possible the development of a 

generation of low cost inertial sensors, characterized by small size and light weight 

which represent an attractive option for commercial applications as pedestrian and 

vehicular navigation. MEMS-based INS are characterized by low performance too, so 

their use as part of an integrated navigation system is currently under investigation. 

This dissertation investigates the integration of MEMS INS with GNSS systems in 

pedestrian and vehicular navigation in urban environment; the GPS and GLONASS 

measurements are employed and processed in single point mode. 

Pedestrian and vehicular navigation, and in general land navigation, are often related to 

the LBS (Location-Based Services), i.e. the information or entertainment services, 

accessible with mobile devices, based on the ability to determine the position of the 

mobile device (De Agostino 2010); the requirements of a service depend on how critical 
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it is and can vary from 100 meters (for commercial purpose) to few meters for 

emergency service. 

1.2 Previous Work and Limitations 

The main topic discussed in this dissertation is the integration of GNSS and INS 

systems. 

Several researchers have investigated this topic considering high-end inertial sensors, 

e.g. a navigation-grade inertial system is adopted in El-Sheimy et al. (1995) and 

Grejner-Brzezinska et al. (1998), and a tactical-grade INS is adopted in Petovello (2003) 

and Nassar (2003). The use of high-end INS allows a sub-metric position accuracy level 

during GPS outages and is generally confined to only technical high-accuracy 

applications, owing to their price and size. 

In the last few years, several researchers have investigated the integration of GNSS 

systems with MEMS-based INS, characterized by low cost and low performance, for 

instance Nayak (2000), Shin (2005), Mezentsev (2005), Abdel-Hamid (2005), Godha 

(2006). 

Nayak (2000) investigated the feasibility of using multiple antennas to isolate and detect 

multipath on pseudoranges, and the integration of differential GPS (DGPS) and a low 

cost IMU for navigation in an urban vehicular environment. Shin (2005) focused on the 

use of the unscented Kalman filter to develop a low cost INS aided by DGPS 

measurements. Abdel-Hamid‟s research (2005) aims at enhancing the accuracy of an 

integrated system DGPS/INS(MEMS) in land vehicular navigation, using fuzzy logic 

based techniques. Godha (2006) evaluated the performance of the integration between 

DGPS and MEMS-INS, using single differenced pseudorange and Doppler observables 

in vehicular navigation. Shin (2005) and Godha (2006) proposed also the use of post-

mission smoothing techniques. 

All the above-mentioned researchers have focused their work on the use of GPS system 

in differential mode; this involves the deployment of a base station not far from the area 

where the navigation takes place and, in case of real-time application, a radio-modem 

linking the base and the rover must be included too. The need of the mentioned surplus 

equipment can be considered an important limitation of these works. 

This research investigates the performance of an integrated system GPS/INS(MEMS), 

with GPS working in single point mode. 
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Since the beginning of 2003, the Russian government started to restoring the 

GLONASS system, which at November 11
th

 2010 includes 20 operating satellites. 

The recent enhancement of GLONASS satellite system suggests the combined use with 

GPS in order to increase the satellite availability; this can be especially useful in places 

with lack of GPS signals. 

The benefits of a combined use of GPS and GLONASS systems in terms of reliability, 

accuracy, availability and integrity is pointed out in Cai and Gao (2009) and Angrisano 

et al. (2009a); the benefits in urban vehicular navigation is demonstrated in Angrisano 

et al. (2010). 

Hence in this research, the benefits of GLONASS measurements in the considered 

integrated system are investigated. 

In Sukkarieh (2000) and Shin (2001), it is proposed the use of motion constraints to 

bound the INS errors during GPS outages. The motion constraints are applied to 

vehicular navigation case and are based on the assumptions that the vehicle does not 

slip and always remains in contact with the ground and so the velocity of the vehicle in 

the plane perpendicular to the forward direction is approximately zero. In Sukkarieh 

(2000) the effectiveness of velocity constraints is demonstrated with a medium accuracy 

IMU; Shin (2001) used the velocity constraints to bound the errors in a tactical grade 

IMU. Godha (2006) adopted, in addition to the velocity constraints, an height 

constraint, based on the assumption that the height solution does not typically vary by 

more than few tens of meters in a small region; Godha (2006) demonstrated the motion 

constraint effectiveness with a MEMS IMU in vehicular application. Also in Klein et al. 

(2010) the knowledge of the vehicle‟s behavior is used to generate pseudo-

measurements aiding the estimation process. 

This research investigates the effectiveness of the motion constrains in pedestrian 

navigation too, suitably increasing the constraint uncertainty with respect to the 

vehicular case. 

1.3 Objectives 

This dissertation investigates the performance of an integrated system consisting of a 

GNSS receiver and a low-cost MEMS-based INS; the considered GNSS systems are 

GPS and GLONASS, whose pseudorange and Doppler observables are processed in 

single point mode (real-time algorithms are adopted). The INS system is implemented 

in the strapdown configuration and the extended Kalman filter is used to merge inertial 
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and GNSS information, in loose or tight architecture. The inertial sensor errors are 

modeled by biases and scale factors, which are estimated in the Kalman filter and 

feedback to the sensor to limit the error growth (implementing a closed loop strategy). 

The velocity and height motion constraints are introduced to bound the INS errors 

during GNSS outages. 

The specific objectives of this thesis are: 

 To analyze the performance of GPS/INS system with loosely and tightly coupled 

architectures. The GPS/INS system (without further aiding) represents the basic 

configuration to evaluate the loose and tight strategies; tight architecture is 

usually preferred in environments with lack of GPS signals (as urban scenario), 

owing to its ability to carry out integrated solution in case of GPS partial 

outages. In open sky condition the two architecture usually provide similar 

results. 

 To investigate the performance improvements when GLONASS measurements 

are included. The GPS/GLONASS/INS (GNSS/INS) system performance is 

analyzed in loose and tight integration to assess the benefits of including 

GLONASS and evaluate if the GLONASS inclusion can change the role of 

loosely coupling in urban navigation. 

 To evaluate the performance of the integrated systems GPS/INS and GNSS/INS 

in different operating environments as open sky, urban canyon, severe urban 

canyon. 

 To analyze the integrated systems in vehicular and pedestrian navigation in the 

considered operating scenarios. 

 To investigate the performance improvements when the integrated system is 

aided by velocity and height motion constraints. This aided configuration is 

compared with other configurations and the effectiveness of the constraint 

aiding is evaluated in both pedestrian and vehicular contexts. 

1.4 Thesis Outline 

Chapter 2 provides an overview on the navigations systems involved in this research. 

First GPS and GLONASS systems are reviewed with emphasis on their similarities and 

differences and on the single point positioning. 

Next inertial navigation systems are introduced, focusing on the main equations 

involved and on the errors limiting their accuracy. 
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Chapter 3 provides an overview about the estimation methods used in this research, i.e. 

Kalman Filter and Least Square method. 

In the second part of the chapter the reliability testing and the blunder detections 

strategies are briefly reviewed. 

 

Chapter 4 provides a review of the GNSS measurement models for single point 

positioning, using pseudorange and Doppler observables. 

First the algorithms for PVT (Position-Velocity-Time) estimation are explained in case 

of GPS only. Subsequently the GPS/GLONASS combined algorithms are introduced. 

 

In Chapter 5 the main aspects of the GNSS/INS integration are reviewed.  

The loosely and tightly coupled architectures are discussed and compared. Afterwards 

an algorithm for the direct observation of azimuth is reported and the use of constraints 

to bound the INS error during GNSS outages is introduced. 

 

Chapter 6 describes some tests carried out with details about the adopted equipment, the 

operational environment and the implemented algorithms. 

The considered scenarios are the pedestrian and the vehicular navigation in urban 

canyon context. The results obtained are compared with a reference solution achieved 

using an higher grade inertial sensor and post-processing procedures. 

 

Chapter 7 summarizes the work presented in this thesis and draw conclusions from the 

test results described in Chapter 6. 
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Chapter 2  Systems Overview 

This Chapter discusses the navigations systems involved in this research. 

First the main Global Navigation Satellite Systems (GNSS), GPS and GLONASS, are 

reviewed with emphasis on the single point positioning and the resulting accuracy. The 

similarities and the differences between the systems are made clear as is the benefit of 

their joint use. 

Next inertial navigation systems are introduced, focusing on the main equations 

involved and on the errors limiting their accuracy. Some details are provided about 

MEMS low-cost sensors and their performance.  

2.1 GPS Overview 

Global Positioning System (GPS) is a worldwide, all-weather positioning system able to 

provide tri-dimensional position and time synchronization to UTC scale. 

GPS positioning is based on the one-way ranging technique: the time of travel of a 

signal transmitted by satellites is measured and scaled by speed of light to obtain the    

satellite-user distance.  

To measure the time of travel of the signal both satellite and receiver are equipped with 

clocks and a ranging signal is broadcast by satellite; the ranging signal is a particular 

code in which is embedded a timing information that enables the receiver to compute 

when the signal left the satellite according to the satellite clock (Kaplan and Leva 2006). 

In ideal conditions satellite and receiver clocks are synchronized and the time of travel, 

multiplied by light speed, provides the true range satellite-receiver; in this case the user 

position would belong to the spherical surface centered in the satellite position (at the 

transmission epoch) and with radius equal to the true range.  Thus three simultaneous 

range measurements define three spherical surfaces, whose intersection would allow 

coordinates determination. 

Actually satellites and receiver clock are not synchronized, generating errors in the 

measured distances (also other error sources affect the measurements, but they are 

negligible with respect to the error due to non-synchronization); so the measured range 

is not equal to the true range and is denoted as pseudorange (Kaplan and Leva 2006). 

At least four simultaneous measurements are necessary to compute user position, 

because a further unknown, representing the receiver clock bias, has to be included 

(more details are given in the section 2.1.2). 
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2.1.1 GPS Structure 

The GPS system consists of three segments: the space segment, the control segment and 

the user segment. 

The space segment consists of a constellation of artificial satellites. The GPS 

constellation is defined as an “Expandable 24-Slot” constellation (GPS SPS 

Performance Standard 2008). A slot is a defined location, containing at least one 

operational satellite; 24 slots are placed on six orbital planes, with four slots per plane. 

Three slots are expandable, i.e. can be occupied by two satellites in backward and 

forward locations with respect to the pre-defined slot location. Satellites without a pre-

defined slot are considered “surplus” satellites; surplus satellites are recently launched 

waiting to be moved into a slot or old satellites in the last period of their operative life 

(the last case is really common because so far the GPS satellites had longer operative 

life than expected) (GPS SPS Performance Standard 2008).  

The GPS space segment at November 11
th

 2010 includes 30 operating satellites 

(ftp://tycho.usno.navy.mil/pub/gps/gpstd.txt). 

The right ascensions of the adjacent ascending nodes are spaced 60°, the orbits are 

almost circular with an inclination of about 55° and an average altitude of 20200 km; 

the orbital period is one-half sidereal day so that the ground traces repeat each sidereal 

day. 

The GPS satellites are able to receive signals from control segment and other satellites 

and can broadcast signals to the control and user segments; they are equipped with 

micro-processor to process data and they are able to perform maneuvers guided by the 

control segment. Moreover satellites are equipped with atomic clocks, able to keep time 

with great precision with frequency stability on the order of 10
-14

 (Spilker 1996a). 

The Control Segment (CS) consists of the Master Control Station (MCS), L-band 

Monitor Stations (MS) and S-band Ground Antennas (GA). MCS tasks include 

estimation of satellite ephemeris and clock parameters, starting from information stored 

by MS, generation of navigation message, maintaining of GPS time and synchronization 

to Universal Time Coordinate (UTC) as maintained by US Naval Observatory (USNO), 

and commanding satellite maneuvers to keep the nominal orbits. MS tasks include 

navigation signal tracking, range and carrier measurement and atmospheric data 

collection. The job of the GA is to transmit satellite commands and to perform satellite 

navigation upload (Dorsey et al 2006).  
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The user segment is made up of all the system users, equipped with a GPS receiver-

processor able to receive and decode the GPS signal to obtain position/velocity/time 

information. 

GPS satellites broadcast signals on two carrier frequencies: L1 (1575.42 MHz) and L2 

(1227.60 MHz). These carriers are modulated by two kinds of Pseudo-Random-Noise 

(PRN) codes, the Coarse-Acquisition (C/A) code with a 1.023 MHz chip-rate and a 

period of one millisecond, and the Precise (P) code with a 10.23 MHz chip-rate and a 

period of seven days. The C/A code is available on the L1 carrier only and the Precise 

(P) code on both L1 and L2.  

Since 2000 the US government started a modernization of GPS including the broadcast 

of new signals for civil and military use (Ward et al 2006). 

The PRN codes are binary signals having spectral characteristics similar to random 

sequences, but which are actually deterministic (Ward et al 2006). GPS system uses the 

Code Division Multiple Access (CDMA), i.e. all satellites use the same frequencies and 

each satellite transmits a different PRN code, so that at the receiver level it is possible to 

distinguish between tracked satellites. 

PRN codes are also called “ranging codes”, because the comparison between the 

received PRN code and its replica generated inside the receiver allows the estimation of 

the propagation interval of the signal from the satellite to the user (and hence the 

pseudo-range). 

The C/A code is for civil use, it can be used by every user equipped with a GPS 

receiver/processor and its use is associated with Standard Positioning Service (SPS). 

The P code instead is for military purpose, its access is restricted to authorized users 

only (using encrypting techniques) and its use is associated with Precise Positioning 

Service (PPS). The need of two frequencies to accurately compensate for ionospheric 

delay has motivated the development of techniques to obtain L2 P code pseudorange 

and carrier-phase measurements without the cryptographic knowledge for full access to 

this signal. These techniques are referred to as either codeless or semicodeless 

techniques (Ward et al 2006). 

In addition to the ranging codes, the carries are also modulated by the navigation 

message, a 50 Hz signal providing all the information necessary to compute the precise 

location of the satellites and to correct the satellite clock errors. 

The GPS modernization adds to the existing signals three new civil signals: the L2C 

civil signal allowing ionospheric correction along with L1 C/A signal in civil 
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applications, the L5 signal on the new carrier 1176.45 MHz designed for aviation safety 

applications, and the L1C signal designed to enable interoperability with Galileo and 

other GNSS systems (Wang 2010). Also the military code M is added to both L1 and L2 

(Ward et al 2006). 

2.1.2 GPS Observables 

GPS civil receivers can generate three types of measurements: pseudorange (PR) 

measurements, phase measurements and Doppler measurements. 

The Pseudorange measurement is obtained using the ranging code C/A and represents 

the time necessary for the signal to travel from the satellite to the receiver, scaled by the 

light speed. The PR is obtained using correlation between the received PRN-code and a 

replica generated inside the receiver; the measured shift between the two signals 

anyway contains clock biases (hence the term “pseudo”), because the received signal is 

marked by the satellite time and the local signal is referred to the receiver clock. 

Formula (2-1) shows the expression of the true PR, i.e. the pseudorange in ideal error-

free condition including only clock biases. 

 RStrue tctcdPR    (2-1) 

where 

truePR  is the true PR (m) 

d  is the true range satellite-receiver (m) 

Stc  is the satellite clock bias relative to the GPS time (s) 

Rtc  is the receiver clock bias relative to the GPS time (s) 

c  is the speed of light (m/s) 

 

Actually the PR  measurement includes also other kind of error, as shown in formula 

(2-2): 

   multitropoionoorbRS ddddtctcdPR  (2-2) 

where 

PR  is the measured PR (m) 

orbd  is the orbital error (m) 

ionod  is the ionospheric error (m)  
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tropod is the tropospheric error (m) 

multid  is the multipath error (m) 

  is the error caused by the noise in the receiver (m) 

and the other terms meaning is the same of the previous formula. 

 

In single point positioning, the operational mode investigated in this work, all the error 

terms are modeled or neglected leaving four unknowns: the three receiver coordinates, 

included in the d term, and the receiver clock bias Rtc . So at least four simultaneous 

visible satellites are necessary to compute the user position, solving the system of 

equations (2-2), linearized around an approximate solution, using Kalman Filter or 

Least Square method. 

The position accuracy obtainable in good visibility condition for a single point mode is 

about 10 meters (Conley et al. 2006). 

 

Phase measurement is obtained using the carrier phase (L1 or L2) and is the 

(accumulated) phase of the beat frequency generated by the difference of the incoming 

and local carriers. The phase measurement, multiplied by the carrier wavelength, 

represents the satellite–receiver range with the ambiguity of an integer number of 

wavelength. The phase measurement equation is: 

   multitropoionoorbRS ddddNtctcd  (2-3) 

where 

  is the wavelength of the carrier 

  is the phase measurement 

N  is the number of cycles in the satellite–receiver distance  

and the other terms are as previously defined. 

 

The phase measurement is inherently more precise than the code measurement (Wells et 

al 1987), with more than two orders of magnitude less noise (Ward et al. 2006). 

A meaningful difference between phase and pseudorange measurements is that the 

phase observable includes the unknown number of carrier cycles between the satellite 

and the receiver, which usually cannot be determined in stand-alone navigation 

(Axelrad and Brown 1996). However this measurement is used for precise differential 
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interferometric GPS applications, such as static and kinematic surveying or for attitude 

determination (Ward et al. 2006). 

An exception is the Precise Point Positioning (PPP) technique, which uses both code 

and carrier phase measurements in single point mode and precise satellite orbit and 

clock products (e.g. from IGS), obtaining accuracies of decimeter (Kouba and Héroux 

2001). 

 

The Doppler measurement is the derivative of the carrier phase and represents the 

frequency shift caused by the relative receiver-satellite motion. It is generally measured 

in carrier cycles per seconds (Hz) and, when multiplied with the carrier wavelength, 

represents the derivative of the satellite-receiver range and thus can be used to compute 

the user velocity (considering known the satellite motion). The Doppler measurement 

equation is obtained by taking the derivative of equation (2-3): 

    multitropoionoorbRS ddddtctcdRP  (2-4) 

where: 

RP   is the measured range derivative, from Doppler measurement (m/s) 

d  is the satellite-receiver distance rate (m/s) 

Stc   is the satellite clock drift (m/s) 

Rtc   is the receiver clock drift (m/s) 

orbd  is the orbit error drift (m/s) 

ionod  is the ionospheric error drift (m/s) 

tropod  is the tropospheric error drift (m/s) 

multid  is the multipath error drift (m/s) 

  is the error drift of the noise in the receiver (m/s). 

 

The velocity accuracy obtainable using the Doppler measurements is in the order of 

some centimeter per second (Hoffmann-Wellenhof 1992); this good accuracy level is 

connected to the small amount of the errors in equation (2-4), indeed these errors are 

derivatives of the orbital, propagation (atmospheric and multipath) and noise errors. 
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2.1.3 GPS Errors 

The errors corrupting the GPS performance are described below; a more extensive 

treatment is in Conley et al 2006 and Parkinson 1996. 

 

The satellite clock error is the offset between the time maintained by the atomic clocks 

on the satellite and the reference GPS time. The MCS computes and broadcasts to the 

users the parameters to correct the satellite clock error, according to the equation (IS-

GPS-200 2004): 

     relocfocffsat tttattaat 
2

210  (2-5) 

where: 

0fa  is the clock bias (s) 

1fa  is the clock drift (s/s) 

2fa  is the frequency drift (s/s
2
)   

oct  is the clock parameters reference epoch (s) 

t  is the current epoch (s) 

relt  is the relativistic correction (s) 

 

The relativistic correction is caused by the slight eccentricity of the satellite orbits, 

bringing a periodic change in the satellite gravitational potential and in the satellite 

speed in the inertial frame (Conley et al 2006). The relativistic correction is expressed 

by the formula: 

  EaeccFtrel sin  (2-6) 

where 

2/110 /10442807633.4 msF   

ecc  is the orbit eccentricity 

a  is the square root of the orbital semi-major axis 

E  is the eccentric anomaly of the satellite 
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The residual satellite clock error, after the application of (2-5), vary from 0.3-4 m RMS 

of equivalent range error, depending on the satellite generation and correction 

parameters age (Conley et al 2006). 

 

The receiver clock error is the difference between the time maintained by the receiver 

clock and the reference GPS time. The receiver clock error is typically modeled with 

two states representing a bias and a drift error, indicating the presence of a frequency 

error (Brown and Hwang 1997). 

The receiver clock bias is a time-varying error that affects all the range measurements in 

the same amount for a fixed epoch and is included as an unknown in the single point 

positioning mode (section 4.1). The receiver clock drift affects the Doppler 

measurement (Kaplan and Leva 2006) and is included as an unknown in the Doppler 

measurement models as shown in section 4.2. 

 

The orbital error is the difference between the computed and the actual satellite position. 

The computed position is estimated by the MCS using data collected by MS, is upload 

to the satellite and is broadcasted to the users in the navigation message. The orbital 

error has three components: along-track, cross-track and radial. The range error is 

essentially related to the radial component. The accuracy of the computed satellite 

position is related to the age of the estimations and is on the order of 0.8 m RMS 

(Conley et al. 2006). 

 

The ionospheric error is the measurement error caused by the propagation of the GPS 

signals in the ionosphere. The ionosphere is the region of the atmosphere between about 

70 km and 1000 km above the Earth surface. Within this region sun radiation ionizes a 

portion of the gas, producing free electrons and ions; a signal travels through the 

ionosphere with a speed different from the speed of light. In the GPS case, the code and 

so the PR are delayed and the carrier phase is advanced. The ionosphere is a dispersive 

medium, i.e. the propagation speed depends on the carrier frequency, so the ionospheric 

delay can be eliminated using dual frequency receivers. In this work only single 

frequency solutions are considered and in this case the ionospheric error can be reduced 

using suitable models, the most common being the Klobuchar model (Klobuchar 1996) 

which removes about 50% of ionospheric error on average and whose coefficients are 
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broadcasted in the navigation message. The ionospheric residual error after the 

Klobuchar model is on order of 7 m RMS (Conley et al. 2006). 

 

The troposphere is the lower atmosphere layer, from the Earth‟s surface to 50 km. The 

troposphere yields a variation in the wave propagation with respect to vacuum. It can be 

considered a non-dispersive medium for frequency up to 15 GHz, so the delay is 

independent from the carrier frequency. In GPS case both PR and carrier phase will 

experiment the same delay and dual-frequency receivers cannot be used to eliminate it. 

The tropospheric delay is a function of the temperature, pressure and humidity. The 

tropospheric error is typically broken in two components: a dry component, including 

about 90% of the error and highly predictable, and a wet component, including about 

10% of the error and more difficult to predict. Several models can be used to reduce the 

influence of the tropospheric error, bringing sub-meter accuracy (Spilker 1996b). In this 

study the Hopfield model is used. 

 

The multipath error is caused by the arrival at the receiver of the signal via multiple 

paths because of the reflections during the signal propagation (Parkinson 1996). The 

multipath error can be the dominant error in some scenarios like urban environment. 

Both code and carrier phase are affected by multipath phenomenon, but in different 

ways. Code multipath can vary from few meters in benign environments to over one 

hundred meters in strongly reflective scenarios (Parkinson 1996) and can be much 

greater in situations where only the echoes are received (Mezentsev 2005). Carrier 

phase multipath is generally much smaller, of centimeter order. Because the Doppler 

measurements is the derivative of the carrier phase measurement, the multipath effect 

on the velocity estimation is very small (Godha 2006). 

 

The receiver noise error includes the thermal noise and the receiver hardware effects. 

Typical errors for code measurement are of few decimeters order and negligible for 

carrier phase measurement (Conley et al. 2006). 

2.2 GLONASS Overview 

GLONASS system has an operational principle similar to GPS system: the user 

equipment is able to measure pseudo-ranges and pseudo-range rates with respect to 

space vehicles, and uses this information to compute the position, velocity and for 
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synchronization with a reference time scale. As with GPS, GLONASS also consists of 

space segment, control segment and user segment. 

The space segment is a constellation of nominally 24 artificial satellites placed in three 

orbital planes whose ascending nodes are 120° apart. Theoretically 8 satellites are 

equally displaced on each plane, with a displacement of argument of latitude among the 

planes of 15°. The orbits are planned to be circular with an inclination of 64.8° and a 

radius of 19100 km, corresponding to an orbital period of 11
h
15

m
 with ground tracks 

repeating every 17 orbital periods. The satellite constellation, if completely deployed, 

would provide a continuous and worldwide coverage for users on the Earth surface or in 

the near-Earth space (ICD-GLONASS 2008). The GLONASS space segment at 

November 11
th

 2010 includes 20 operating satellites, 4 in maintenance and 2 spares.  

Currently the “Glonass-M” generation of satellites are in orbit (www.glonass-

ianc.rsa.ru).  

The control segment consists of a System Control Center and a network of command 

and tracking stations deployed in the Russian territory, and is responsible for the 

determination and the upload of the satellite orbits and for monitoring satellite clock and 

health. 

The user segment is the ensemble of all the users equipped with a GLONASS 

receiver/processor able to receive the GLONASS signals and to process the received 

information to obtain position, velocity and time synchronization with UTC reference 

time. 

The Glonass-M satellites transmit signals on two frequency bands: L1 ~ 1.6 GHz and 

L2 ~ 1.25 GHz. On both the bands, the carriers are modulated by two ranging codes, 

one associated to a standard positioning service (ST) accessible to all the users and 

another associated to a precise positioning service (VT) restricted to authorized users 

only. The ranging code associated to the ST has a 511 kHz chip-rate and a period of one 

millisecond, the code associated to the VT has 5.11 MHz chip-rate. In this work only 

the ST is considered. Both carriers are modulated by signal storing the navigation 

message. 

Unlike GPS, the GLONASS system uses the Frequency Division Multiple Access 

(FDMA) technique, i.e. each satellite transmits on carriers with different frequencies 

and the frequency plan is: 
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where: 

1Kf  is the frequency of the K
th

 satellite on the sub-band L1, 

2Kf  is the frequency of the K
th

 satellite on the sub-band L2, 

01f  is the central frequency of the L1 sub-band and is 1602 MHz, 

02f  is the central frequency of the L2 sub-band and is 1246 MHz, 

K  is the frequency channel and is an integer number from -7 to +6, 

1f  is the frequency increment for the sub-band L1 and is 562.5 KHz and 

2f  is the frequency increment for the sub-band L2 and is 437.5 KHz. 

 

Hence at the receiver level, GLONASS satellites can be distinguished by the frequency; 

GLONASS satellites on the same orbit and in antipodal positions can transmit carries at 

the same frequency. 

In addition to the ranging codes the carriers are modulated by the navigation message. 

The navigation message includes immediate and non-immediate information. The 

immediate data are related to the satellite broadcasting the signal and include the 

satellite ephemeris and the parameters for the on-board clock correction. The non-

immediate data are related to the whole constellation and include the coarse 

constellation ephemeris and clock corrections, the constellation status and correction to 

convert GLONASS system time to UTC scale. 

2.2.1 GPS-GLONASS Differences 

Although GPS and GLONASS are very similar, there are several meaningful 

differences, which can be classified in three categories: constellation differences, signal 

differences and reference differences (Cai 2009). 

About the GPS and GLONASS constellations, the nominal number of satellites is 24 for 

both, but GPS constellation provides for the eventuality of surplus satellites with no pre-

defined slots. The orbital planes are 6 for GPS and 3 for GLONASS; the GLONASS 

orbits are lower than GPS ones, and are more inclined, allowing a better coverage at 

high latitudes. The GLONASS satellites orbital period is shorter than GPS one, with 

ground tracks repeating every 8 sidereal days for the first and every day for the second. 
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Moreover GLONASS constellation has a “symmetric” configuration, i.e. the 24 slots 

are uniformly distributed on the three orbital planes; the slots on each plane are evenly 

spaced and the argument of latitude displacement between the planes is constant (the 

GLONASS constellation is referred to as Walker constellation). On the other hand GPS 

constellation is intentionally “asymmetric”: the number of satellites on the planes can be 

different owing to the surplus satellites and the satellites are unevenly distributed on the 

orbit, in order to optimize the constellation coverage in case of one satellite outage 

(Spilker 1996c). 

About the signal, all the GPS satellites broadcast signals at the same carrier frequencies 

L1 and L2, while GLONASS satellites use different carrier frequency on each satellite. 

So GPS and GLONASS system use different multiple access schemes: CDMA for GPS 

(the transmitting satellites are distinguished by the code) and FDMA for GLONASS 

(the transmitting satellites are distinguished by the frequency). The next generation of 

GLONASS satellites (Glonass-K) is planned to implement the CDMA strategy to 

improve the compatibility with GPS (Cai 2009). 

In addition the chip rate of the C/A and P codes of GLONASS is about half of the 

corresponding GPS codes. The chip width, defined as the inverse of the chip rate, is 

related with the receiver high-frequency error. For typical receivers, the standard 

deviation of this error is about 1/100 of the chip width, corresponding to about 3 m and 

0.3 m for GPS C/A and P codes, and to about 6 m and 0.6 m for GLONASS C/A and P 

codes (Axelrad and Brown 1996). 

Moreover the satellite broadcast ephemerides stored in the GPS navigation message are 

Keplerian parameters and are transformed in Earth Centered Earth Fixed (ECEF) frame 

using the orbital propagation algorithm (IS-GPS-200 2004); the satellite broadcast 

ephemerides in GLONASS navigation message are directly expressed in ECEF frame 

(ICD-GLONASS 2008), but anyway a propagation algorithm is necessary to compute 

the satellite position in the desired epoch (usually the epoch of transmission of the 

signal). The detailed orbital algorithms are described in section 4.3. 

GPS and GLONASS systems adopt different coordinate frames to express the satellite 

and user coordinates: WGS84 for GPS and PZ90 for GLONASS. All the details, 

geodetic constants and parameters of WGS84 and PZ90 are in IS-GPS-200 2004 and 

ICD-GLONASS 2008. The two reference frames are nearly coincident, but the 

combination of measurements from both the system requires a transformation between 

the frames; neglecting this transformation yields an position error from a single receiver 
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of metric order (Misra et al. 1998). In general, the transformation WGS84 – PZ90 is 

performed using a seven-parameters transformation, including a rotation, a translation 

and a scale factor. Starting from September 20 2007, an improved version of the 

GLONASS reference frame is in use, called PZ90.02; WGS84 – PZ90.02 

transformation requires only a shift as shown in formula (2-8): 
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with cmX 36 , cmY 8 , cmZ 18  (Revnivykh 2007). 

 

GPS and GLONASS systems adopt different reference time scales, which are connected 

with different realizations of Universal Time Coordinated (UTC).  

In detail GPS time is connected with UTC(USNO), the UTC maintained by US Naval 

Observatory; GPS time and UTC(USNO) are different because UTC scale is 

occasionally adjusted of one second to keep it close to the mean solar time (connected 

to the astronomical definition of time). GPS time scale is indeed continuous and so there 

is a difference of an integer number of seconds (called leap seconds) between GPS time 

scale and UTC(USNO) (currently the leap seconds are 15). Moreover GPS time and 

UTC(USNO) are maintained by different master clocks, producing a further difference 

of typically less than 100 ns; this difference is broadcast to the users in the navigation 

message. 

GLONASS time scale is connected to UTC(RU), the UTC as maintained by Russia. 

GLONASS time is adjusted by leap seconds, according to the UTC adjustments, so 

there is no integer number of seconds between the GLONASS and UTC(RU) scales, 

only a difference less than 1 millisecond exists and is broadcasted in the GLONASS 

navigation message. 

The transformation between GPS and GLONASS times is expressed by the following 

formula (Cai 2009): 

 gucGLOGPS tt    (2-9) 

with: 

GLORUUTCc tt  )(  broadcasted in the GLONASS navigation message 
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)()( RUUTCUSNOUTCu tt   to be estimated 

)(USNOUTCGPSg tt   broadcasted in the GPS navigation message 

 

To perform the transformation (2-9), the difference between UTC(USNO) and 

UTC(RU) should be known, but this information nowadays is not provided in real-time; 

this problem is generally solved (also in this work) including the difference between the 

systems time scales as unknown when GPS and GLONASS measurements are used 

together. 

The comparison between GPS and GLONASS systems is summarized in Table 2-1. 

Table 2-1 – Comparison between GPS and GLONASS (adapted by Cai 2009) 

  GPS GLONASS 

Constellation 

Number of Satellites 24+surplus 24 

Orbital Planes 6 3 

Orbit Altitude 20200 Km 19100 Km 

Orbit Inclination 55° 64.8° 

Ground Track Period 1 Sidereal Day 8 Sidereal Days 

Layout Asymmetric Symmetric 

Signal 

Carrier Frequency 

1575.42 MHz 

 

1227.60 MHz 

1602+K*0.5625 MHz 

 

1246+K*0.4375 MHz 

Ranging Code Frequency 

C/A: 1.023 MHz 

 

P: 10.23 MHz 

C/A: 0.511 MHz 

 

P: 5.11 MHz 

Multiple Access Scheme CDMA FDMA 

Broadcast Ephemeredes Keplerian ECEF 

Reference 
Reference System WGS84 PZ90.02 

Reference Time GPS Time GLONASS Time 

  

2.3 INS Overview 

In this section an overview on the inertial navigation is provided; more complete 

treatments are in Chatfield 1997 and El-Sheimy 2004. 



 36 

An Inertial Navigation System (INS) is a combination of sensors able to determine all 

navigation states of a moving object, i.e. position, velocity and attitude; the ensemble of 

sensors is an Inertial Measurement Unit (IMU) and consists of three accelerometers and 

three gyroscopes mounted on an orthogonal triad. The accelerometers measure the 

specific force, defined in the inertial frame as: 

 gaf   (2-10) 

where 

f  is the specific force 

a  is the kinematic acceleration  

g is the gravitational acceleration 

 

To obtain the velocity of the moving object, the measured specific force should be 

corrected of the gravitational term, integrated once and the result added to the initial 

velocity. Integrating the obtained velocity and adding the initial position, yields the final 

position. So an INS can be considered a sophisticated Dead Reckoning (DR) system 

(El-Sheimy 2004). However the INS is actually more complicated because the measured 

specific force is expressed in a frame different from the frame in which velocity and 

position are usually expressed (navigation frame). For this reason the gyro triad is 

included in the IMU: gyros are able to measure angular rate with respect to the inertial 

frame, which, when integrated, provides the angular change with respect to the 

previous, supposed known, initial orientation. So gyros are used to transform the 

measured specific force in the navigation frame; the transformation can be mechanic, 

i.e. the IMU is physically aligned to the navigation frame (Gimbaled configuration), or 

analytic, i.e. the acceleration measurements are numerically transformed in the 

navigation frame (Strapdown configuration). Strapdown configuration is currently the 

more common strategy and is used in this work. 

An uncompensated error in the accelerometer measurement (e.g. a bias) is integrated 

once introducing a linear error in velocity, which in turn integrated will introduce a 

quadratic error in position (El-Sheimy 2004). The presence of an uncompensated gyro 

error is more critical, introducing linear error in angles and in turn yielding quadratic 

error in velocity and cubic error in position. Thus the INS performance strongly 

depends on the quality of the included gyros (El-Sheimy 2004). 
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2.3.1 Reference Frames and Transformations 

The most common reference frames are used in this work and are listed below. 

An inertial frame is a non-rotating and non-accelerating frame with respect to the fixed 

stars. In inertial navigation the Earth Centered Inertial (ECI) frame is used and is 

defined as follows: 

Origin: Earth‟s center of mass 

  Z
i
-Axis: parallel to the Earth‟s spin axis 

X
i
-Axis: pointing to the mean vernal equinox 

Y
i
-Axis: orthogonal to X

i
 and Z

i
 axes to complete a right-hand frame 

The ECI frame is not strictly inertial, because its origin is involved in the Earth 

revolution round the Sun; moreover the Earth‟s spin axis is involved in the precession 

and nutation motions, making the vernal equinox slowly move. Anyway the ECI frame 

is considered inertial for navigation purpose (Nastro 2004).   

 

The Earth Centered Earth Fixed (ECEF) is a frame integral to the Earth and is defined 

as follows: 

Origin: Earth‟s center of mass 

Z
e
-Axis: parallel to the Earth‟s spin axis 

X
e
-Axis: on the equatorial plane, pointing to the mean meridian of Greenwich  

Y
e
-Axis: orthogonal to X

i
 and Z

i
 axes to complete a right-hand frame. 

 

The East-North-Up (ENU) reference is a local frame centered in the navigation system 

origin and defined as follows: 

Origin: center of the navigation system 

Z
n
-Axis (or U-Axis): pointing upward along the ellipsoid normal 

X
n
-Axis (or E-Axis): on the horizontal plane, pointing toward geodetic East  

Y
n
-Axis (or N-Axis): on the horizontal plane, pointing toward geodetic North.  

 

The ECI, ECEF and ENU frames are shown in Figure 2-1. 
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Figure 2-1 – ECI, ECEF and ENU Frames 

The body frame is an orthogonal frame, whose axes are coincident with the axes of the 

IMU. In the gimbaled arrangement the body frame is kept aligned to the chosen 

navigation frame, using the gyro information and external torques. In the strapdown 

arrangement the IMU is rigidly mounted on the moving object to be positioned and 

conventionally is considered aligned with it. The body frame (Figure 2-2) in this work is 

defined as follows: 

Origin: center of the navigation system 

X
b
-Axis: pointing towards the right of the moving object 

Y
b
-Axis: pointing towards the front of the moving object  

Z
b
-Axis: orthogonal to X

b
 and Z

b
 axes to complete a right-hand frame. 
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Figure 2-2 – Body Frame 

The transformation between ECI and ECEF can be performed by a single rotation 

around Z axis (formula (2-11)), because the frames have coincident origins and Z axes. 
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  (2-11) 

where: 

rad/sec  5-67e7.29211514  is the Earth‟s rotation rate, 

0ttt   is the difference between the current epoch t  and the epoch when the frames 

were coincident 0t  and 

 zR  is a rotation matrix around the z-axis, representing an anticlockwise rotation of 

the amount in the parenthesis 

 

The transformation between ECEF and ENU frames, in addition to the rotation, must 

include the shift, because the frames have different origins, and is expressed by the 

formula (2-12) (Farrell 2008): 
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where 
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  and   are the geodetic coordinates of the origin of the ENU frame, 

 xR  and  zR  are rotation matrices around the X and Z axes, representing 

anticlockwise rotations of the amount in the parenthesis and 

 TZYX 000  are the coordinates of the ENU frame origin, expressed in the ECEF 

frame. 

 

In case of ECEF-ENU transformation of a velocity vector, the shift term must be 

omitted as showed below (Farrell 2008): 
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 9090  (2-13) 

where 

 T
ENUZYX VVV  are the velocity components in the ENU frame and 

 T
ECEFZYX VVV  are the velocity components in the ECEF frame. 

 

The transformation between ENU and body frames can be performed by three 

consecutive rotations as shown in (2-14): 
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  (2-14) 

where: 

  is the roll angle of the moving object, 

  is the pitch angle, 

  is the yaw angle and 

 xR ,  yR  and  zR  are rotation matrices around the X,Y and Z axes respectively. 

 

 ,   and   are called Euler angles. A more compact notation can be used to express 

the ensemble of rotations necessary to transform a point coordinates from a frame to 

another; the matrix necessary to transform ENU coordinates in body frame can be 

indicated as: 
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        zxy

b

n RRRR  (2-15) 

Performing the computations, equation (2-15) becomes (from Salychev 1998): 
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and the Euler angles as functions of the elements of the rotation matrix b

ENUR  are 

computer as: 
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 (2-17) 

2.3.2 Mechanization Equations 

The mechanization equations are a set of equations used to obtain useful navigation 

information from the IMU measurements, i.e. specific force and angular rate. In this 

work the mechanization is implemented in ENU frame (El-Sheimy 2004) and so it is 

referred to as navigation frame. 

The equations modeling the motion of the moving object in the ENU frame are 

(extensive treatment about the computations is given in Shin 2001 and El-Sheimy 

2004): 
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 (2-18) 

The first equation of (2-18) represents the relationship between the geographic 

coordinates and the velocity components in the ENU frame: 

 
nn

VDr   (2-19) 
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where: 

 Tn
hr   is position of a mobile in the local ENU frame, expressed by the 

geographic coordinates latitude, longitude and altitude, 

 TUNE

n
VVVV   is the velocity in the ENU frame, consisting of the three East, 

North and Up components, 

D  is matrix to transform velocity components to the derivative of geographic 

coordinates and has the expression: 

 
 





























100

00
cos
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0
1

0

hN

hM

D  (2-20) 

with 

M  radius of curvature in the Meridian and 

N  radius of curvature in the Prime Vertical. 

 

The second equation of (2-18) is the velocity mechanization equation in ENU frame: 

   nnn

en

n

ie

bn

b

n
gVfRV  2  (2-21) 

where 

n
V  is the kinematic acceleration in the ENU frame, 

nn

en V  is the centripetal acceleration related to the motion of the ENU frame with 

respect to the ECEF frame, 

nn

ie V2  is the Coriolis acceleration, 

n
g  is the gravity vector, including the Gravitation term and the centripetal term related 

to the Earth rotation and 

b
f  is the specific force vector in the Body frame and is measured by the 

accelerometers. 
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The matrix n

ie  is the skew-symmetric matrix of the vector 
n

ie , rotation rate of Earth 

expressed in the ENU frame as: 

  Tn

ie  sincos0  (2-22) 

The matrix n

en  is the skew-symmetric matrix of the vector 
n

en , rotation rate of the 

ENU frame with respect to ECEF frame, expressed in the ENU frame as: 

 

T

EENn

en
hN

V

hN

V

hM

V

















tan
 (2-23) 

The third equation of (2-18) is the attitude mechanization equation and expresses the 

dynamics of the attitude of the Body frame with respect to navigation frame: 

  b

in

b

ib

n

b

n

b RR   (2-24) 

The matrix b

ib  is the skew-symmetric matrix of the vector 
b

ib , rotation rate of the 

Body frame with respect to the ECI frame, expressed in the Body reference; 
b

ib  is 

measured by the gyros.  

The matrix b

in  is the skew-symmetric matrix of the vector 
b

in , which is the rotation 

rate of the navigation frame with respect to inertial frame expressed in the Body frame; 

b

in  is computed combining 
n

ie  and 
n

en  from equations (2-22) and (2-23) and 

transforming the result in the Body frame as follows: 

  n

en

n

ie

b

n

b

in R    (2-25) 

The INS mechanization in the ENU frame is summarized in Figure 2-3. 
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Figure 2-3 – INS Mechanization in ENU Frame (adapted from El-Sheimy 2004) 

To obtain the navigation parameters from the INS measurements, the first step is using 

the gyro measurements to determine the orientation of the IMU with respect to the 

navigation frame. Gyros sense the angular rate of the IMU referred to the inertial frame, 

including the Earth rotation, the orientation changes of the local frame and the angular 

rates of the IMU; to obtain only the angular rate of the moving body, the other two 

components should be removed. In the equation (2-24) this correction is obtained 

subtracting the term b

in , including Earth rotation and ENU orientation changes as 

shown in (2-25). To determine the IMU attitude the differential equation (2-24) can be 

solved by integration, computing n

bR . The more common approach (not used in this 

work) consists in using quaternion method (details in El-Sheimy 2004 and Chatfield 

1997). 

In the second step, the specific force from the accelerometers (in the Body frame) is 

transformed in the navigation frame using the computed rotation matrix n

bR  and is 

corrected for the Coriolis term, for the navigation frame change of orientation term and 

for the gravity (equation (2-21)). The corrected acceleration can be integrated to 

compute the velocity, which integrated provide the position, being known the initial 

values. 

The IMU measurements are typically corrupted by some kind of errors like bias, scale 

factor and misalignment errors (the INS errors are treated in the next section and more 

details can be found in Chatfield 1997 and El-Sheimy 2004). The INS errors can be in 

part determined in laboratory calibration and in part estimated in the Kalman filter; once 
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the errors are obtained, the measurements should be suitably corrected according to the 

follow equations: 

 

gi

gi

b

ib

i

ai

ai

b

ib

i

S

b

S

bf
f











1

~

1

~




 (2-26) 

where 

the subscript i is referred to the axis of the sensor (i=x,y,z) 

the symbol “~” is placed on the raw measurements 

aib  is the bias of the accelerometer on the axis i 

gib  is the bias of the gyro on the axis i 

aiS  is the scale factor of the accelerometer on the axis i 

giS  is the scale factor of the gyro on the axis i  

2.3.3 INS Error Dynamics 

The mechanization equations (2-18) simply process inertial data from the IMU to obtain 

navigation parameters providing no information about the errors of the system; the 

estimation of the system errors is often required to improve performance to a 

satisfactory level and this is usually performed in a Kalman filter as showed in section 

5.3.2 (Petovello 2003). 

The errors of  the navigation parameters are defined as: 
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 (2-27) 

where 

the symbol   represents the perturbation from the nominal value, 

the elements with the hat ^  are estimated quantities and without are actual quantities, 

nE  is the skew-symmetric matrix of the vector of the attitude errors in the ENU frame. 
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It must be noticed that the error definition in (2-27) is only a convention; the opposite 

convention could also be adopted without loss of generality, paying attention to 

maintain a consistent convention throughout (Petovello 2009). 

The behavior of the navigation parameter errors, i.e. the position, velocity and attitude 

errors, can be obtained perturbing the mechanization equations (2-18) and neglecting 

terms of order higher than first as (the full derivation of the equation is in El-Sheimy 

2004, Shin 2001 and Yang 2008): 
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where 

n
  is the vector of the attitude errors in the ENU frame, 

b
f  is the vector of the errors in the measured specific force, 

b
w  is the vector of the errors in the measured angular rate, 
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2.3.4 Inertial Sensor Errors 

All sensors are affected by errors which degrade their accuracy. The primary sources of 

errors in inertial sensors are bias, scale factor and noise. Some errors of inertial sensors 

are deterministic and can be determined through specific lab-calibration procedures. 

The remaining errors are not systematic and they need to be modeled stochastically. 

The accelerometer and gyro measurements equations are: 

 
gggg

aaaa

mfSfb

mfSfbff








~

~

 (2-29) 

with 

f  and f
~

 actual and measured specific force  

  and ~  actual and measured angular rate 

ab  and gb  sensor biases 

aS  and gS  sensor scale factors 

am  and gm  non-orthogonality errors 

a  and g  sensor noises 

 

More detailed measurement equations can be found in Chatfield 1997 and El-Sheimy 

2004, including further terms as non-linear scale factors and cross-axis coupling factors. 

The sensor bias is defined as the average of the output, obtained during a specific period 

with fixed operational conditions when the input is null. The bias generally consists of 

two parts: a deterministic part called bias offset or turn-on bias and a stochastic part 

called bias drift or in-run bias. The turn-on bias is essentially the offset in the 

measurement and is constant over a single mission; it has deterministic nature and so 

can be determined by calibration procedure. The turn-on bias is generally negligible in 

high-end IMUs, while in low-cost sensors (used in this work) can be large and has to be 

determined with frequent calibrations or estimated in the Kalman filter. The bias drift is 

the rate at which the error in the sensor accumulates with time (El-Sheimy 2004); the 

bias drift has random nature and so must be modeled as a stochastic process. 

The scale factor error is the ratio between the change in the output signal of the sensor 

and the change in the physical quantity to measure. In ideal conditions the scale factor 
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should be unity (El-Sheimy 2004). This error has a deterministic nature and can 

theoretically be determined by calibration but generally is modeled as a random process. 

The non-orthogonality errors results from imperfection in mounting the sensor triad, so 

that each axis is affected by the measurements of the other axes (El-Sheimy 2004). This 

error has a deterministic nature and can be calibrated in the laboratory using suitable 

techniques (a low cost procedure is proposed in Angrisano et al. 2009), but usually is 

included in the INS error equations. 

The sensor noise is an additional signal affecting the measurement, resulting from the 

sensor itself or from the other electronic equipment (El-Sheimy 2004). Noise has 

random nature and cannot be removed using deterministic models, but can only be 

modeled stochastically. Several stochastic models can be used to model noise and to 

choose the suitable model the autocorrelation sequence of the sensor output should be 

studied (or equivalently its spectral density) (Nassar 2003). Noise in inertial sensors 

usually is modeled as zero-mean white noise, i.e. it is considered to have a spectral 

density the same for all the frequencies of interest (Godha 2006). Different techniques 

can be adopted to study noise in inertial sensors. A possible option is the wavelet 

decomposition, detailed in Nassar 2003. The wavelet decomposition technique consists 

in splitting the signal into low and high frequency components; the low frequency 

component represents the slowly varying sensor errors (essentially the bias drift) and 

the high frequency component is the sensor noise. The standard deviation of the high 

frequency component is an estimation of the noise power. Another possible procedure is 

to compute the standard deviation using few seconds of static data (removing the mean) 

and several data sets; the mean of the computed standard deviations is an estimation of 

the noise power. This method is based on the assumption that in short intervals other 

errors and input are approximately constant (Petovello 2003). 

2.3.5 MEMS Sensors 

The inertial sensors adopted in this work are low-cost and a brief overview on their 

performance is below (from Angrisano et al. 2010). 

The great advances in Micro Electro-Mechanical Systems (MEMS) has been made 

possible the development of a generation of low cost inertial sensors. MEMS IMU are 

characterized by small size, light weight and low cost with respect to high-end inertial 

sensors. These features make the MEMS sensors an attractive option for applications 

such as pedestrian or vehicular navigation. However, MEMS sensors are characterized 

by poorer performance too, so they cannot be used in autonomous mode for extended 
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periods but they are well suited to integrated navigation systems (usually coupled with 

GNSS systems). MEMS sensor performance is summarized in the Table 2-2, where also 

navigation and a tactical grade IMU performance are listed for a direct comparison. 

Table 2-2 – Summary of IMU Characteristics for Different Grades of Sensors 

(from Petovello 2003 and Godha 2006) 

Parameter IMU Grade 

Navigation Tactical MEMS 

Accelerometers 

In Run Bias (mg) 0.025 1 2.5 

Turn On Bias (mg) - - 30 

Scale Factor (PPM) 100 300 10000 

VRW (g/√Hz) - 2.16e-06 370e-06 

Gyros 

In Run Bias (°/h) 0.0022 1 <1040 

Turn On Bias (°/h) - - 5400 

Scale Factor (PPM) 5 150 10000 

ARW (°/h/√Hz) 6.92 7.5 226.8 

Approx. Cost >$90000 >$20000 <$2000 

 

The ARW (Angular Random Walk) and VRW (Velocity Random Walk) are parameters 

usually included in the sensors data-sheets to describe their performance. 

The ARW parameter describes the average deviation or error that will occur from 

integrating the noise on gyro output signal (Stockwell 2003).  Similarly VRW parameter 

definition is based on the same concept for the accelerometers. 

The performance and the cost of an IMU strongly depends on the gyro quality (El-

Sheimy 2004). From Table 2-2 we can see that the turn on bias of MEMS gyro is about 

5400 deg/h, while it is negligible in the navigation and tactical grade sensors. Also the 

in run bias can be 1040 deg/h in MEMS sensors, while is about 1 deg/h in a tactical 

grade gyro. These parameters provide a good assessment of MEMS performance with 

respect to higher grade sensors. 
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Chapter 3  Estimation and Reliability Overview 

In the first part of this chapter an overview about the estimation methods used in this 

research is provided. Details of Extended Kalman Filter (EKF) and Least Square 

method (LS) are introduced and compared. Main references for this topics are Brown 

and Hwang (1997) and Petovello (2009). In the second part of the chapter the reliability 

testing and the blunder detections strategies are briefly reviewed. 

3.1 Estimation 

Estimation is the process of obtaining a set of unknowns of interest from a set of 

uncertain measurements, according to a definite optimization criterion (Bar-Shalom et 

al. 2001). To estimate the unknown parameters, a functional relationship has to be 

defined with the measurements; usually this relationship is referred to as the 

measurement model and the set of unknown parameters is referred to as system state 

vector. 

The measurement model could be solved for the unknowns if the number of 

(independent) equations is at least equal to the number of the unknowns. If the 

measurements are redundant, the solution can be estimated in some optimal sense. If the 

measurement number equals the equation number, the solution is unique (if it exists) 

and there is no space for optimization. 

If other equations are included in addition to the measurement model, the set of 

unknowns can be estimated also in situations of lack of measurements. These further 

equations can be obtained considering information about the system state dynamics, 

usually referred to as process model. The inclusion of the process model can provide in 

general a better estimation of the system state vector. 

The measurement model is usually expressed in the form: 

        ttxtHtz   (3-1) 

where: 

 tz  is the measurement (or observation) vector at time t 

 tH  is the design matrix or geometry matrix at time t, containing the geometry of the 

observations with respect to the state vector   

 tx  is the state vector at time t 
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 t  is the measurement noise at time t, with spectral density  tR  

 

The process model is usually represented as: 

          twtGtxtFtx   (3-2) 

where: 

the „dot‟ notation indicates the time derivative,  

 tF  is the system dynamic matrix at time t, a coefficient matrix describing the 

dynamics of the system, 

 tG  is the shaping matrix at time t, used to shape the white noise in input to match the 

actual characteristic of the system, 

 tw  is the process driving noise at time t, with spectral density  tQ  

  

The measurement and system models in equations (3-1) and (3-2) are supposed to be 

linear; actually it is common that these models are characterized by a more complicated 

form. In this case the models are previously treated by linearization techniques such as 

Taylor expansion (Petovello 2003). 

The estimation methods adopted in this research are the Least Square method (described 

in the section 3.1.1), which uses only the knowledge of the measurement model to 

estimate the state vector and the Kalman filter (described in section 3.1.2), which uses 

also the process model. 

3.1.1 Least Square Method 

The Least Square method (LS) is the most common estimation procedure in geomatics 

application (Petovello 2009) and in LS the state vector estimation is based purely on the 

measurements. The discrete version of measurement model (3-1) is used, because the 

LS algorithm (as are the other algorithms considered herein) is usually implemented on 

a computer: 

 
kkkk xHz   (3-3) 

where the subscript „k‟ refers to the k
th

  epoch kt . 
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The LS approach is to obtain an estimate of the state vector kx̂  minimizing the sum of 

the squares of the difference  kkk xHz ˆ , referred to as residuals. To this purpose a 

cost function is defined as: 

    kkk

T

kkkk xHzxHzJ ˆˆ   (3-4) 

The LS estimate is obtained computing and setting to zero the derivative of the cost 

function (3-4) and solving for kx̂  (equation (3-5)): 

 0ˆ22
ˆ

 kk
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k

k

k xHHzH
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 (3-5) 

The result is: 

   k

T

kk

T

kk zHHHx 
1

ˆ  (3-6) 

Equation (3-6) is the LS solution, whose error covariance matrix is 

     11

ˆ


 k

T

kz

T

kk

T

kx HHHCHHHC  (3-7) 

where zC  is the measurement covariance matrix. 

 

In ideal conditions of independent measurement errors, with zero mean and equal 

variance 2 , the zC  matrix becomes diagonal with equal values on its diagonal and the 

solution error covariance matrix becomes 

   21

ˆ 


 k

T

kx HHC  (3-8) 

Taking into account in the estimation that the measurements are characterized by 

different accuracy, a Weighted LS (WLS) can be performed. 

The new cost function is defined as: 

    kkk

T

kkkk xHzWxHzJ ˆˆ   (3-9) 

with W  weighting matrix. 
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The WLS solution, obtained by setting to zero the time derivative of the cost function 

(3-9) and solving for the state vector, is:  

   k

T

kk

T

kk zWHWHHx 
1

ˆ  (3-10) 

and the WLS solution error covariance matrix is: 

     11

ˆ


 k

T

kz

T

kk

T

kx WHHWHWCHWHHC  (3-11) 

The weighting matrix can be set as the inverse of the measurement covariance matrix, 

weighting the accurate measurements more and the noisy ones less (Brogan 1981); in 

this case the (3-11) becomes: 

     111

ˆ


 kz

T

kk

T

kx HCHWHHC  (3-12) 

3.1.2 Kalman Filter  

The Kalman Filter (KF) estimation is a common technique commonly used in 

navigational applications. KF uses knowledge about measurements and state vector 

dynamics and so adopts both measurement (3-1) and process models (3-2), in discrete 

form as follows: 

 
1111  

kkkk xHz   (3-13) 

 kkkkk wxx   ,11  (3-14) 

The measurement model in equation (3-13) is formally identical to the model used in 

LS, with the additional assumption of zero-mean white noise with Gaussian distribution 

for the measurement noise 
k

  (whose covariance matrix is indicated as kR ). 

In the process model (3-14), kk ,1  is the state transition matrix from epoch k
th

 to 

(k+1)
th

 and can be obtained from the continuous system dynamic matrix F in (3-2), 

assuming F time-invariant during the sampling time interval t , as: 

 tFIe tF

kk  

 ,1  (3-15) 
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This assumption is not rigorously true, but the resulting error can be considered 

negligible because the sampling time interval is usually very small (Shin 2001). 

The term kw  is the process driving noise at epoch k
th

, with a covariance matrix kQ , 

accounting for the uncertainty of the process model. The covariance matrix of the 

process noise kQ  can be obtained from the continuous spectral density matrix Q  using 

the equation: 

         dGQGQ T

k

T

t

t

kk

k

k

,1,1

1

  


 (3-16) 

The equation (3-16) is usually impractical, so a numerical approach has to be adopted; 

in this research the following approximation is used (Petovello 2003): 

             
2

,1,1

t
tGtQtGtGtQtGQ k

T

kk

T

kk

T

kkkk


    (3-17) 

The process noise kw  is assumed to be white with zero-mean and Gaussian distribution 

and uncorrelated with the measurement noise 
k

 . 

The Kalman filter is a recursive algorithm using a series of prediction and update steps 

to obtain an optimal state vector estimate in a minimum variance sense. 

The KF equations (whose details of derivation are in Brown and Hwang 1997) belong 

to two groups.  

The first group contains the prediction equations, used to predict the state vector and the 

associated covariance matrix from the current to the next epoch, using the assumed 

process model. The equations performing the prediction step are: 

 






  kkkk xx ˆˆ
,11  (3-18) 

 k

T

kkkkkk QPP  







 ,1,11  (3-19) 

where the superscript “-” indicates a predicted (or a priori) quantity (i.e. before the 

measurement update) and the superscript “+” indicates the corrected (or a posteriori) 

quantity (i.e. after the measurement update). kP  is the covariance matrix of the state 

vector at epoch kt . 
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The second group of equations is the correction equations, which update the state vector 

and the associated covariance matrix according to the measurement model. The KF 

update equations are: 

 1111
ˆˆ









  kkkk Kxx   (3-20) 

   





  1111 kkkk PHKIP  (3-21) 

where 

1kK  is the Kalman gain matrix at epoch 1kt  (defined below) and 

1k  is the innovation vector at epoch 1kt . 

 

The innovation vector 1k  is defined as the difference between the actual measurement 

vector and the predicted measurement vector, in turn defined as the predicted state 

vector projected on the measurement space: 

 


  111111
ˆˆ

kkkkkk xHzzz  (3-22) 

The innovation vector can therefore be considered as an indication of the amount of 

information introduced in the system by the current measurements. 

The Kalman gain matrix is a weighting factor, indicating how much the new 

information contained in the innovation vector influences the final state vector estimate. 

Practically the gain matrix weights the new information from the measurement against 

the predicted knowledge of the state (Petovello 2003). 

The Kalman gain matrix is obtained minimizing the state vector variance and is defined 

as: 

   1

1111111











  k

T

kkk

T

kkk RHPHHPK  (3-23) 

The Kalman filter algorithm is illustrated in Figure 3-1. 
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Figure 3-1 – Kalman Filter Algorithm 

As mentioned previously, both measurement and process models are often more 

complicated than (3-1) and (3-2), and it is necessary a linearization process (usually 

with Taylor expansion) be adopted to reduce the equations to that form. The 

linearization should be performed around a nominal trajectory  tx
*

, defined as the 

time-series of the parameters contained in the state vector. The actual state vector can 

then be expressed as: 

      txtxtx 
*

 (3-24) 

where  tx  is a perturbation from the nominal trajectory. 

 

After the linearization procedure, the estimation problem becomes estimating the 

perturbation vector (now state of the system) to add to the nominal state to obtain the 

“complete” state (by equation (3-24)). 

The nominal trajectory  tx
*

 can be known a priori and in this case a Linearized 

Kalman Filter (LKF) is performed. It is noted that a reasonable estimate of the trajectory 

is usually not available, especially with the accuracy necessary to satisfy the 

linearization assumptions (Petovello 2009). A more common approach is to use as a 

point of linearization the previous Kalman filter estimate; this approach is adopted in 

this research and is defined Extended Kalman Filter (EKF). In the EKF if the states are 
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well estimated, the perturbation remains sufficiently small to satisfy the linearization 

assumptions. The EKF usually operates in a closed-loop mode, that is, every time the 

state vector  tx  is updated, it is used to correct the nominal state. When this happens 

the state vector is reset to a null vector (Petovello 2009). An important consequence is 

that the state vector prediction (3-18) is no longer necessary, because the a posteriori 

state estimate after the correction is reset to zero. In the prediction step, only the 

covariance propagation must be performed. The state vector update results simplified as 

showed below: 

   11111111
ˆˆˆ













  kkkkkkkk zKxHzKxx   (3-25) 

The covariance matrix update is unchanged. 

3.2 Reliability Testing 

The reliability concept is correlated with the ability to identify and discard the 

measurement affected by large errors (or blunders), which if undetected would largely 

corrupt the final system output. 

In this research the systems involved are GNSS and INS sensors; the inertial systems 

are herein considered unaffected by blunders, although their errors are unbounded, 

because of their inherent characteristics of autonomy and immunity to interferences. 

GNSS systems instead are stable in the long-term but their short-term accuracy is 

strongly limited by signal quality. So the blunders are supposed to be essentially 

originated by GNSS signal corruption during the propagation path, related to multipath, 

cycle slips, ionospheric scintillation or other unspecified errors. Then the blunder 

detection and rejection is an essential procedure to improve the accuracy of the 

navigation parameters, especially in severe scenarios for propagation (as urban canyon, 

where multipath is the dominant error). In the context of GNSS, the reliability testing is 

referred to as Receiver Autonomous Integrity Monitoring (RAIM). 

In reliability testing usually the measurements are assumed to follow a defined 

distribution and the presence of a blunder on a measurement means that this 

measurement no longer belongs to the defined distribution. Actually it is not possible to 

know for sure if a measurement belongs to the pre-defined distribution or not, so a 

statistical approach is used, defining a decision variable and threshold to compare 

against in order to obtain this information with a certain probability. The event that no 

failure occurs is called Null-Hypothesis H0, the event that a failure occurs is referred to 
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as Alternate Hypothesis Ha; if the decision variable D does not exceed the threshold T, 

the Null-Hypothesis is accepted and no blunders are supposed to exist for the 

considered measurement set, but if D exceeds T, the Alternate-Hypothesis is accepted 

and a blunder is assumed. Two kinds of errors can occur: a false alarm if D>T in 

absence of blunders and missed detection if D<T in presence of blunders. 

The probability of false alarm FAP  and missed detection MDP  are expressed as: 

  0| HTDPPFA   (3-26) 

  aMD HTDPP |  (3-27) 

where the symbol  P  indicates the probability of the event between the brackets. 

 

Various procedures can be used to perform a quality control on the measurements, 

herein the adopted strategies are described (from Kuusniemi etal 2004, Petovello 2003, 

Petovello 2009). 

In the LS case a quality control is performed testing the residuals: 

 xHzr ˆ  (3-28) 

The residuals, defined as the difference between the actual measurements and the 

predicted measurements, represent the level of agreement of the measurements to each 

other and so are suitable to assess the quality of the LS solution. 

In the GNSS contest the measurement errors are assumed to be Gaussian with zero-

mean and uncorrelated; the decision variable D is defined as the sum of the squares of 

the residuals, weighted by the associated covariance matrix rC : 

 rCrD r

T
  (3-29) 

and is assumed to follow a 
2  distribution with  nm  degrees of freedom or 

redundancy, that is the difference between the number of measurements m  and the 

number of states n . 

 

The threshold T is usually related to the probability of false alarm and to the redundancy 

as shown in equation (3-30): 
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2

,1 nmPFA
T    (3-30) 

where the notation  
2

,1 nmPFA   indicates the abscissa corresponding to a probability 

value  FAP1  of a chi-square distribution of  nm   order. 

 

A common procedure consists of fixing FAP  according to the application requirements 

and letting the threshold vary with the redundancy number. 

A typical value for the probability of false alarm is 0.1% (Petovello 2003). 

The described procedure is referred to as the global test and checks the measurements 

self-consistency and is useful to verify the presence of a blunder among the 

observations. 

To identify the blunder/s in the set a local test can be performed; to this purpose the 

normalized residuals are defined as: 

 
 

iir

i
i

C

r
w   (3-31) 

where the index mi :1 , with m  number of observations. 

 

The normalized residuals iw  are assumed to be normally distributed in case of lack of 

blunders and can be tested as follows: 
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 (3-32) 

where the notation 2/1 FAPn   indicates the abscissa corresponding to a probability value 

 2/1 FAP  of a normal distribution. 

 

The largest normalized residual exceeding the considered threshold is suspected to 

contain a blunder; actually there is no guarantee that the maximum iw  corresponds to 

an outlier and more than only one blunder can be in the data set. Therefore a recursive 

application of the global and local tests can be carried out, performing a multiple 

blunder rejection. In this work only a minimum number of exclusions is desired, 
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because tests are carried out in critical environments as urban canyons, characterized by 

lack of observations. 

 

In KF case, the measurement quality control is performed testing the innovation vector 

(3-22), whose properties are to be zero-mean white noise with Gaussian distribution, 

that is, same as the process noise kw  and the measurement noise 
k

 . Furthermore the 

covariance matrix of the innovation vector 
k

C  is (computations details are in Brown 

and Hwang (1997)): 

 k

T

kkk RHPHC
k

 

  (3-33) 

The following blunder detection procedure is detailed in Petovello (2003). 

A simplified assumption is made about the presence of a single blunder in the data set. 

When an observation is affected by a single blunder, the measurement model (3-13) 

becomes: 

 
kkkkkk ii

mxHz   (3-34) 

where 

ik  is a scalar expressing the value of the blunder on the i
th

 measurement and 

ikm  is a vector projecting the blunder on the i
th

 measurement. 

 

The innovation vector becomes biased by the term 
ii kkm   as shown below: 

 
ii kkkkkk mxHzv 


ˆ  (3-35) 

and is supposed to maintain the same covariance matrix 
k

C . 

 

Considering these proprieties of the innovation vector, a decision variable can be built 

related to it as: 
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  (3-36) 
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The considered decision variable has Gaussian distribution with zero-mean in the 

absence of a blunder and is biased in case of a blunder being present. Hence reliability 

testing can be carried out using as threshold the point of the x-axis corresponding to a 

probability of  2/1 FAP  of a normal distribution (equation (3-37)). 
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 (3-37) 

The Null-Hypothesis (no blunder on the i
th

 observation) is accepted if the first equation 

is verified, the Alternate Hypothesis (blunder on the i
th

 observation) is accepted if the 

second one is verified. 

In case of multiple blunders simultaneously, this strategy can be used recursively, 

rejecting at each step the largest blunder until no more blunders are detected. 
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Chapter 4  GPS/GLONASS PVT Algorithms 

In this chapter the GNSS measurement models are reviewed. 

First a single satellite system is considered (GPS or GLONASS) and the algorithms 

used for PVT (Position-Velocity-Time) estimation are explained. Whenever a concept is 

different between GPS and GLONASS, it is clearly pointed out. Subsequently the 

GPS/GLONASS combined model is introduced. 

The discussion is taken from Kaplan and Leva 2006 and Axelrad and Brown 1996. 

The reviewed measurement models will be used (in the Chapter 5) to perform the GNSS 

only filter of the loosely coupled integration, which in this research is implemented by a 

WLS estimator. Moreover the considered models will be used, coupled with suitable 

process models (described in the Chapter 5), to implement the GNSS/INS filter in the 

tightly coupled architecture. 

4.1 Position Computation using Pseudorange 

In this section the algorithm to compute the GPS receiver position from pseudorange 

measurements is described. The algorithm is valid for GLONASS system too. 

Recall the PR measurement equation (2-2), applying all the corrections described in 

2.1.3 and including all the residual errors in the term PR , yields: 

 PRPR d c t     (4-1) 

where 

c t  is the receiver clock bias (the subscript “R” of the receiver clock offset is omitted 

when no ambiguity is possible), 

the geometric range is expressed as      
2 2 2

S S Sd x x y y z z      , 

 SSS zyx ,,  are the satellite coordinates and  

 , ,x y z  are the receiver coordinates expressed in ECEF frame. 

 

The receiver coordinates and the receiver offset c t  form the state vector to be 

estimated  , , ,
T

x x y z c t . 
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The satellite coordinates in the ECEF frame are computed using the ephemeris 

information contained in the navigation message, according to the algorithm showed in 

the sections 4.3. 

At least four simultaneous visible satellites are necessary to form a set of equations like 

(4-1) to solve for the unknowns, in closed-form or with iterative techniques based on 

linearization; in this case a linearization procedure is performed around an approximate 

position and time bias estimate  Ttczyxx 0000 ,,,ˆ  . 

Expanding in Taylor series the equation (4-1) about the approximate point and 

truncating the expansion at the first order yields: 

     
 

 0 0 0 0 0

ˆ ˆˆ ˆx xx x

PR PR PR PR
PR PR x x y y z z c t c t

x y z c t
 



   
        

   
 

(4-2) 

where 

the notation 
x̂

PR

x




 represents the partial derivative of the function PR  with respect to 

the variable x , evaluated in the approximate point x̂  and  

0PR  is the predicted PR , i.e. the pseudorange evaluated in the approximate point x̂ , 

computed as       0

2

0

2

0

2

00 tczzyyxxPR SSS  . 

 

After some simple computations the equation (4-2) becomes: 

  X Y Zz a x a y a z c t        (4-3) 

where 

0PRPRz   is the difference between the measured and the predicted pseudorange,   

0x x x   , 0y y y   , 0z z z   ,   0c t c t c t      are the incremental 

components from the linearization point, 

0

0
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x x
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d


 , 

0
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d


 , 

0

0

S
Z

z z
a

d


  are the direction cosines of the unit vector 

from the approximate position to the observed satellite. 
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A set of equations as (4-3) forms the linearized measurement model: 

 PRPRPR xHz   (4-4) 

where 

PRz  is the vector of the pseudorange measurements corrected by a priori information, 

PRH  is the geometry matrix, containing the direction cosines defined above, 

PR  is the vector of residual errors, 

 
T

x x y z c t         is the new unknown vector, which can be estimated 

using the LS method. 

 

The receiver coordinates and clock offset can be finally computed, after the x  

estimation, as: 

 xxx  ˆ  (4-5) 

To obtain the user position in latitude, longitude and altitude from the ECEF 

coordinates different algorithms can be used; herein the Bowring algorithm is adopted 

(Bowring 1976). 

 

Herein the PR  measurement model is implemented in the ENU frame centered in the 

approximate receiver position  000 ,, zyx . In the ENU frame the geometric range is 

expressed as 

     
2 2 2

S S Sd E E N N U U       

where  SSS UNE ,,  are the satellite coordinates and  , ,E N U  are the receiver 

coordinates expressed in the considered ENU frame. 

 

The PR measurement equation (4-1) can be modified as: 

      
2 2 2

S S S PRPR E E N N U U c t          (4-6) 

and can be linearized around the approximate point x̂ , in turn expressed in the ENU 

frame as  Ttcx 0,0,0,0ˆ  , yielding: 
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 (4-7) 

After some simple computations the equation (4-7) becomes: 

  E N Uz a E a N a U c t        (4-8) 

where 

0PRPRz   is the difference between the measured and the predicted pseudorange, 

E E  , N N  , U U  ,   0c t c t c t      are the incremental components 

from the linearization point, 

0

S
E

E
a

d


 , 

0

S
N

N
a

d


 , 

0

S
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d


  are the direction cosines of the unit vector from the 

approximate position to the observed satellite. 

 

A set of equations like (4-8) is formally identical to (4-4), with the differences that the 

geometry matrix contains the new direction cosines and the new unknown vector to be 

estimated is   TRtcUNEx  . 

To obtain the user position in latitude, longitude and altitude  h,,  the relation 

below must be used (El-Sheimy 2004): 
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(4-9) 

with 

 000 ,, h  geographic coordinates of the approximate position, 

N  prime vertical radius of curvature, 

  meridian radius of curvature. 
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4.2 Velocity Computation using Doppler 

In the modern GPS receivers the velocity is obtained processing the Doppler 

observable, which represents the frequency shift produced by the relative motion of the 

satellite with respect to the receiver (Kaplan and Leva 2006). 

The frequency observed at the receiver Rf  is related to the transmitted frequency Tf  

by the classical Doppler equation: 

  
 1

1
S

SR T

S

r r
f f V V

c r r

 
    

 
 (4-10) 

where 

 SSSS zyxr ,,  is the satellite position vector, 

 , ,r x y z  is the receiver position vector, 

 SV V  is the satellite-receiver relative velocity vector, defined as the difference 

between satellite velocity vector  TSZSYSXS VVVV   and receiver velocity 

vector  
T

X Y ZV V V V . 

All the vector are expressed in the ECEF frame. 

 

The dot product  
 S

S

S

r r
V V

r r


 


 represents the projection of the relative velocity 

vector on the receiver-satellite direction, i.e. is the range rate d . 

The Doppler shift is: 

  
 ST T
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r rf f
f f V V d

c r r c


      


 (4-11) 

Scaling the above equation with the signal wavelength   yields: 

  TR ffd    (4-12) 

The measured range rate (or pseudorange rate) must take into account that the observed 

frequency is affected by the receiver clock drift and the transmitted frequency is 

affected by the satellite clock drift and can be defined as: 
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  TR ffRP ˆˆ    (4-13) 

where 

  is the signal wavelength (m) 

Rf̂  is the measured frequency (Hz) related to the ideal received frequency by the 

relation RRR fff ˆ  

Tf̂  is the actual transmitted frequency (Hz) related to the nominal transmitted 

frequency Tf  by the relationship TTT fff ˆ . 

 

Rearranging the equation (4-13) and considering that RR tcf    and 

SS tcf   , yields: 

 
RS tctcdRP     (4-14) 

Completing the equation with all the error sources affecting the Doppler observable 

(orbital, propagation, relativistic), returns the range derivative equation (2-4); the 

satellite clock drift Stc   can be determined using the information contained in the 

navigation message and is usually negligible (Kaplan and Leva 2006). Applying the 

suitable corrections and collecting the residuals in the term 
RP   yields (the subscript 

“R” is omitted in the receiver clock drift expression for clarity): 

 
PR

PR d c t     (4-15) 

Several approaches can be adopted to estimate the receiver velocity from the equation 

(4-15) and two of them are described in this section. 

The first approach is more immediate, in fact the equation (4-15) can simply be 

rearranged as: 

 
   S S

S

S S

r r r r
PR V V c t

r r r r


 
     

 
 (4-16) 

Expanding the dot products: 
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 (4-17) 

As it can be noticed, the equation (4-17) is linear for the receiver velocity components 

and clock drift, which are the unknowns of the problem, so the linearization process is 

unnecessary. In this approach the receiver position components must be known a priori, 

by applying the position model (4-4) or can be approximated by a previous state 

knowledge. The satellite position and velocity have to be known too, determined from 

ephemeris data. In the considered conditions, to solve for the receiver velocity 

components and clock drift at least four simultaneous Doppler measurements are 

necessary. 

In the second approach the receiver position is not considered known a priori, but it is 

included in the set of the unknowns; so a “Doppler positioning” is performed (Axelrad 

and Brown 1996). 

The equation (4-15) is expanded in Taylor series around the approximate state vector 

0 0 0 0 0 0 0
ˆ

T

X Y Zx x y z V V V c t    , which includes receiver position, velocity 

and clock drift estimate; truncating the expansion at the first order yields: 
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(4-18) 

where 

0RP   is the predicted pseudorange derivative, i.e. the pseudorange rate evaluated in the 

approximate point x̂  and computed as 

        
0

0

000000
000 tc

d

VVzzVVyyVVxx
tcdRP ZSZSYSYSXSXS   


  

 

After some simple computation the equation (4-18) becomes: 



 70 

  X Y Z VX X VY Y VZ Zz b x b y b z b V b V b V c t              (4-19) 

where 

0RPRPz    is the difference between the measured and predicted pseudorange rate, 

0x x x   , 0y y y   , 0z z z   , 0X X XV V V   , 0Y Y YV V V   , 

0Z Z ZV V V   ,   0c t c t c t      are the incremental components from the 

linearization point and 

the coefficients , , , , ,X Y Z VX VY VZb b b b b b  are the partial derivatives in equation (4-18) 

which are given by 
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The linearized Doppler measurement model, consisting of equations as (4-19), is: 

 RPRPRP xHz    (4-20) 

where 

RPz   is the vector of the pseudorange rate measurements corrected by a priori 

information, 

RP
H   is the geometry matrix, 
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RP   is the vector of residual errors, 

 0

T

X Y Zx x y z V V V c t         
   is the unknown vector, which 

can be estimated using the LS method. 

The receiver position, velocity and clock drift can be finally computed, after the x  

estimation as: 

 xxx  ˆ  (4-21) 

This approach has the advantage to allow the receiver position estimation, as well as the 

velocity and clock drift; anyway the Doppler positioning is characterized by an 

observation geometry weaker than the pseudorange positioning and thus in the context 

of GPS it is essentially used for initial position estimation (Axelrad and Brown 1996). 

To solve the equation set (4-20) for the unknown vector at least seven simultaneous 

Doppler observations are necessary; owing to the above-mentioned “weakness” of this 

model for the position determination, this model is usually used in conjunction with the 

PR model as shown in 4.4. 

In this research the implementation in ENU frame is preferred. 

In the ENU implementation the measurement equation is obtained linearizing around 

the approximate state vector 0 0 0 0
ˆ 0 0 0

T

E N Ux V V V c t     as: 
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 (4-22) 

where 

 , ,E N UV V V  are the receiver velocity components in ENU. 

 

After some simple computations the equation (4-22) can be expressed as (4-19) in the 

form: 
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  E N U VE E VN N VU Uz b E b N b U b V b V b V c t              (4-23) 

where 

0RPRPz    is the difference between the measured and predicted pseudorange rate, 

0PR  is the predicted pseudorange derivative expressed in the ENU frame as 
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4.3 Satellite Position and Velocity Computation from Ephemeris 

As clearly evidenced in the sections 4.1 and 4.2, the determination of the satellite 

position and velocity is necessary to compute the receiver position and velocity. 

The algorithms for GPS and GLONASS are different because the ephemerides are 

differently parameterized and broadcasted by the two systems (see 2.2.1) and so the two 
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cases are treated separately. In this work the algorithms for the satellite position and 

velocity are carried out using broadcast ephemerides, stored in the navigation message, 

and are usable for real-time applications. 

The algorithm for the determination of GPS satellite position and velocity is extensively 

treated in IS-GPS-200 2004 and Remondi 2004 and is reported below. 

In GPS system the broadcast ephemeris consists of Keplerian elements and perturbation 

terms (IS-GPS-200 2004) and are listed in the Table 4-1. 

Table 4-1 – GPS Broadcast Ephemeris (adapted by IS-GPS-200 2004) 

Parameter Description Note 

0M  
Mean Anomaly 

at Reference Time 

Keplerian Element 

(rad) 

n  Mean Motion Correction 
Perturbation Term 

(rad/s) 

e  Eccentricity 
Keplerian Element 

(dimensionless) 

A  Square Root of Semi-Major Axis 
Keplerian Element 

(m
1/2

) 

0  
Longitude of Ascending Node 

at Weekly Epoch 

Keplerian Element 

(rad) 

0i  
Inclination Angle 

at Reference Time 

Keplerian Element 

(rad) 

  Argument of Perigee 
Keplerian Element 

(rad) 

  Rate of Right Ascension 
Perturbation Term 

(rad/s) 

IDOT  Rate of Inclination Angle 
Perturbation Term 

(rad/s) 

ucC  
Amplitude of the Cosine Harmonic Correction  

Term to the Argument of Latitude 

Perturbation Term 

(rad) 

usC  
Amplitude of the Sine Harmonic Correction  

Term to the Argument of Latitude 

Perturbation Term 

(rad) 

rcC  
Amplitude of the Cosine Harmonic Correction  

Term to the Orbit Radius 

Perturbation Term 

(m) 

rsC  
Amplitude of the Sine Harmonic Correction  

Term to the Orbit Radius 

Perturbation Term 

(m) 

icC  
Amplitude of the Cosine Harmonic Correction  

Term to the Angle of Inclination 

Perturbation Term 

(rad) 
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isC  
Amplitude of the Sine Harmonic Correction  

Term to the Angle of Inclination 

Perturbation Term 

(rad) 

oet  Reference Time Ephemeris (s) 

 

The algorithm to compute the GPS satellite position and velocity in ECEF frame at the 

epoch t , using the broadcast ephemeris referred to the epoch oet , is summarized in 

Table 4-2; the epoch t  is the time in which the signal is transmitted by the satellite. 

Table 4-2 – Algorithm for the GPS Satellite Position and Velocity Computation 

(adapted by IS-GPS-200 2004 and Remondi 2004) 
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The algorithm for the determination of the GLONASS satellite position and velocity is 

extensively treated in ICD-GLONASS 2008 and is reported below. 

The GLONASS broadcast ephemeris contains the satellite position and velocity and the 

acceleration due to lunar-solar perturbation in the PZ-90.02 ECEF frame (Table 4-3); 

these data are usually updated every 30 minutes. 

Table 4-3 – GLONASS Broadcast Ephemeris 

Parameter Description Note 

 zyx ,,  
Satellite Coordinates 

at Reference Time 
in ECEF (Km) 

 zyx VVV ,,  Satellite Velocity Coordinates 

at Reference Time 
in ECEF (Km/s) 

 zyx  ,,  Lunar-Solar Acceleration Components 
Perturbation Term 

in ECEF (Km/s
2
) 

bt  Reference Time Ephemeris (s) 

 

To compute the satellite position and velocity at a different epoch from the reference 

time 
bt  (usually the epoch of transmission), the satellite motion equations should be 

numerically integrated using the broadcast parameters as initial values. 

The differential equations describing the satellite motion in PZ-90.02 system are: 
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(4-24) 
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where: 

222 zyxr   is the distance satellite-Earth‟s center, 

2

3
91044.398600

s

m
  is the Earth‟s Gravitation constant, 

mae 6378136  is the Earth‟s semi-major axis; 

92

0 107.1082625 J  is the second zonal harmonic of the geopotential; 

510292115.7   is the Earth‟s rotation rate. 

 

The GLONASS ICD (ICD-GLONASS 2008) recommends using the 4
th

 order Runge-

Kutta method for the numerical integration of equation (4-24) and to keep the 

integration time within the 15 minutes interval around the reference epoch 
bt . 

The conversion of the satellite positions into WGS84 frame is expressed by formula 

(2-8). 

4.4 GPS PVT Model 

In case of GPS only (or GLONASS only) PVT determination using PR and Doppler 

observables, the measurement models detailed in sections 4.1 and 4.2 can be jointly 

adopted. Specifically the equations (4-4) and (4-20) are used, implemented in the local 

level frame ENU; the resulting PVT model can be expressed as: 

 
PRPR PR

PR PRPR

Hz
z x H x

Hz






    
          
    

 (4-25) 

where 

z  is the measurement vector, consisting of both PR and PR derivative measurements 

corrected by a priori information, 

x  is the state vector, consisting of receiver position, velocity, clock bias and drift error 

states 

   E N Ux E N U V V V c t c t           
   

  is the vector containing the PR and PR derivative measurement errors, 
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H  is the geometry matrix, consisting of the PR and PR derivative geometry matrices 

PRH  and 
PR

H  in equations (4-8) and (4-23), but properly filled with zeros in 

correspondence of the missing states as 
























10

01000

VUVNVEUNE

UNE

bbbbbb

aaa

H  

To accurately solve the equation (4-25), at least four simultaneous PR measurements 

and four simultaneous Doppler measurements are necessary. 

4.5 GPS/GLONASS Combined PVT Model 

In case of combined use of GPS and GLONASS systems, the previous models valid for 

single system must be slightly changed taking into account that GPS and GLONASS 

have different time reference scales (see section 2.2.1) (Daly and Misra 1996). 

The linearized PR measurement equation (4-3) can be re-written differently for GPS and 

GLONASS systems as: 

 
 

 

G G G G G

E N U

R R R R R

E N U

z a x a y a z c t

z a x a y a z c t





      

      
 (4-26) 

where the superscripts “G” or “R” indicate that the element is referred to the GPS or 

GLONASS system. 

The term  Gc t  is the increment from the linearization point of the offset of the 

receiver clock with respect to the GPS time and  Rc t  is the same for GLONASS. 

The PR measurement model considering the simultaneous presence of GPS and 

GLONASS observation is: 

 

G G
PR PR

PR PRRR
PRPR

z H
z x H x

Hz
 

   
          

  
 (4-27) 

where 

z  is the measurement vector, consisting of both GPS and GLONASS PR measurements 

corrected by a priori information, 
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x  is the state vector, consisting of receiver position and clock biases relative to the 

GPS and GLONASS time 

   
T

G Rx E N U c t c t        
  , 

PR  is the vector containing the PR errors, 

H  is the geometry matrix, organized as 

1 0

0 1

G G G

E N U

R R R

E N U

a a a

H
a a a

 
 
     

 
 
     

. 

 

Usually the system time difference between GPS and GLONASS, herein indicated as 

SYSt , is introduced in the second equation of (4-26) (Cai and Gao2009), yielding: 

 
 

   

G G G G G

E N U

R R R R G

E N U SYS

z a x a y a z c t

z a x a y a z c t c t



 

      

       
 (4-28) 

So in the GPS/GLONASS combined PR measurement model (4-27) the state vector x  

becomes 

   
T

G

SYSx E N U c t c t        
   

and the geometry matrix H  becomes 

1 0

1 1

G G G

E N U

R R R

E N U

a a a

H
a a a

 
 
     

 
 
     

. 

 

To obtain a combined GPS/GLONASS measurement model, including both PR and 

Doppler observables, equations as (4-23) should be included in the model (4-27); 

specifically the equation (4-23) should be detailed for GPS and GLONASS cases as: 
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 (4-29) 

The receiver clock drifts 
Gtc  and 

Rtc  with respect to GPS and GLONASS 

reference times can be considered the same, because the systems time difference SYStc  

is very stable (Cai and Gao 2009) and its derivative can be considered negligible. 

The PR and Doppler measurement model considering the simultaneous presence of GPS 

and GLONASS observation is: 
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 (4-30) 

where 

z  is the measurement vector, consisting of both PR and PR derivative measurements 

relative to GPS and GLONASS corrected by a priori information, 

x  is the state vector, consisting of receiver position, velocity, clock bias and drift error 

states 

     G

E N U SYSx E N U V V V c t c t c t             
 

 

  is the vector containing the PR and PR derivative measurement errors of GPS and 

GLONASS systems, 

H  is the geometry matrix, consisting of the sub-matrices 
G

PRH , 
R

PRH , 
G

PR
H  and 

R

PR
H  

in equations (4-8) and (4-23), but properly filled with zeros in correspondence of the 

missing states as 
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The performance of a combined GPS/GLONASS constellation with respect to a single system 

performance is analyzed in Angrisano et al. 2009a, showing the benefits in terms of 

coverage and integrity. 
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Chapter 5  GNSS/INS Integration 

In this chapter the main aspects of the GNSS/INS integration are reviewed.  

First the complementary nature of the systems is pointed out, then an overview on the 

different integration strategies and configurations is carried out with details on loose 

and tight architectures and their differences. Then an implementation approach is 

provided, describing the measurement and process models for each configuration. 

Afterwards an algorithm for the direct observation of azimuth is reported and the use of 

constraints to bound the INS error during GNSS outages is introduced. 

All the algorithms adopted in this work are used in real-time; post-processing 

techniques are only used to build the reference solution to assess the performance of the 

real-time algorithms and are not described in this work. 

5.1 Complementary Nature of GNSS and INS 

GNSS and INS systems are complementary in many aspects, shortly described below. 

INS short-term errors are relatively small, but they degrade rapidly and are unbounded 

and so external aiding is necessary (Farrel 2008). On the other hand GNSS systems are 

more stable in long-term, meaning their errors are effectively time invariant with 

homogeneous accuracy (Lachapelle 1997). Hence GNSS systems can be used as 

external aiding to bound INS errors. 

INS can provide accurate short-term data with very high rate and can be used to 

interpolate GNSS trajectory. In addition INS sensors supply data with continuity, while 

GNSS are subject to outages, caused by signal blocking or interference. For this reasons 

high-precision inertial sensors (as tactical or superior grade) can be used to bridge 

GNSS outages; unfortunately this might be not possible with MEMS sensors owing to 

their large error drift (Abdel-Hamid 2005). 

Finally INS systems provide the complete navigation state, including position, velocity 

and attitude while a single GNSS receiver cannot supply angular information. 

5.2 GNSS/INS Integration Strategies 

Several approaches can be used to integrate GNSS and INS systems, differing by the 

“depth” of the interaction and for the shared information between the systems. 

The more common strategies are listed below (Petovello 2003): 
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 Uncoupled Integration 

 Loosely Coupled Integration 

 Tightly Coupled Integration 

 Deep or Ultra-Tight Integration 

 

In the Uncoupled approach, the systems work independently providing two distinct 

navigation solutions; usually GNSS one is considered more accurate and is adopted 

when available as system solution. Moreover GNSS solution is used to correct (or reset) 

the INS solution, but without estimating the causes of the sensor drift (as happens in the 

other integration approaches). In absence of GNSS data the system solution is entirely 

supplied by the inertial sensor, which tends to drift rapidly according to its grade. For 

this limitation the Uncoupled strategy is not commonly used. 

The Loosely and Tightly Coupled strategies are the more common integration 

techniques and are implemented in this research; detailed information on them are in the 

next sections.  

In the Loosely Coupled approach the GNSS solution is merged with the inertial based 

information to obtain the final output of the integrated system, while in the Tightly 

approach the integration is “deeper”, because the GNSS raw measurements are directly 

combined with the INS information in a suitable filter. 

In the Ultra-Tight integration the GNSS and INS devices no longer work as independent 

systems, GNSS measurements are used to estimate INS errors and INS measurements to 

aid GNSS receiver tracking loops; this integration is clearly at deep level and requires 

access to receiver‟s firmware and so is usually implemented by receiver manufacturers 

or with software receivers (Petovello 2003, Gautier and Parkinson 2003). 

5.2.1 Loosely Coupled Integration 

The Loosely Coupled (LC) strategy, also referred to as “decentralized”, is realized 

including a KF to combine INS and GNSS navigation parameters and another block (a 

further KF or a LS estimator) is used to estimate the GNSS navigation solution using 

the raw measurements. The LC scheme is showed in Figure 5-1. 
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Figure 5-1 – Loosely Coupled Scheme 

The raw GNSS measurements from the receiver are independently processed in a 

dedicated block. Herein a LS estimator is preferred to simplify a direct LC/TC 

comparison and a single point mode is performed, adopting as raw measurements only 

pseudorange and Doppler observables. 

The inertial solution is obtained applying the mechanization equations (2-18) for a 

strapdown configuration to the accelerations and angular rates from the IMU. The 

difference between INS and GNSS position and velocity are used as input 

measurements to the KF; the associated measurement covariance matrix R input to KF 

is the LS covariance matrix, taking into account the uncertainty of the aiding source, i.e. 

the GNSS position and velocity. 

Instead of a simple LS estimator, to process the GNSS measurements a WLS estimator 

can be adopted to take into account the different inherent accuracies of the observables 

and/or the different “trust” associated to single measurement according to a chosen 

criterion (e.g. the elevation of a satellite). 

The LC scheme in Figure 5-1 operates in closed loop mode, which consists of sending 

back the estimated INS errors from the KF to the mechanization and IMU blocks; in 

detail the estimated navigation errors are sent back to correct the INS state and the 

sensor estimated errors are used to compensate raw IMU measurements according to 

(2-26). The alternative mode is the open loop mode, where the INS operates 

independently from the KF estimator and the estimated errors are not sent back to 

mechanization and IMU blocks; in this way the inertial sensor errors remain uncorrected 

and inertial navigation state errors grow rapidly introducing large errors in the 
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integrated systems. The open-loop mode can be used only for high-end inertial sensors, 

characterized by small errors; usually for low-cost or MEMS based inertial systems the 

closed-loop is necessary (Godha 2006). 

5.2.2 Tightly Coupled Integration 

The Tightly Coupled (TC) strategy, also referred to as “centralized”, is realized 

processing INS navigation parameters and GNSS raw measurements in a central KF. 

The TC scheme is showed in Figure 5-2. 

 

Figure 5-2 – Tightly Coupled Scheme 

It can be noticed that the GNSS raw measurements are not processed in a separate filter 

as in the LC case, but are directly combined in a unique filter. 

The difference between PR and Doppler measurements and INS-predicted 

measurements is used as input of the KF; the associated measurements covariance 

matrix is defined taking into account the inherent accuracies of the GNSS observables 

and elevation-dependent accuracy of the single measurements as in the LC case. The 

INS-predicted measurements (range and range-rate) are computed using the GNSS 

satellite position and velocity from the ephemerides (section 4.3) and user position and 

velocity from the INS. 

The KF state vector size in the TC approach is increased with respect to the LC case, 

because the clock states are also included. 

The closed and open-loop concepts are valid also in the TC case. 
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5.2.3 Loose versus Tight 

Loose and Tight integrations basically differ for the type of information shared between 

the individual systems: processed GNSS solution is merged with INS solution in the 

first strategy and raw GNSS measurements are combined with INS-predicted 

measurements in the second. 

This yields to a different structure of the two architectures, with two separate filters in 

the Loose coupling and only a centralized filter in the Tight.  

The separate filters in the Loose have the advantage to be smaller than the 

corresponding centralized Tight filter, yielding faster processing times. On the other 

hand with separate filters in LC (if a Kalman filter is used to perform the GNSS 

solution), the process noise is added twice, affecting the system performance (Petovello 

2003). If a Least Square estimator is used (as in this work) to obtain the GNSS solution, 

this problem is not present, simplifying the Loosely/Tightly comparison, which is one 

of the purpose of this research. 

Moreover the LC approach is more robust, because INS and GNSS operate separately 

and so can continue to provide navigation solution also in case of failure of one system 

(Godha 2006). 

On the other hand LC has the great disadvantage to be unable to provide GNSS output 

in case of partial availability (e.g. less than four PR in GPS only mode); for this reason 

TC strategy is usually preferred in applications with bad visibility conditions as urban 

canyons. 

5.3 Loosely Coupled Implementation 

In this work the LC architecture is implemented adopting a LS estimator to process the 

raw pseudorange and Doppler measurements in single point positioning mode and in 

real time; the details of the algorithm are in the section 5.3.1. 

The integration GNSS/INS is implemented with a KF described in the section 5.3.2, 

with details on both the measurement and the process models. 

5.3.1 GNSS LS Estimator 

The LS estimator to process PR and Doppler observations is based on the measurement 

model (4-25) in GPS only (or GLONASS only) case and on model (4-30) in combined 

GPS/GLONASS case. 

In a signal-degraded environment (e.g. urban canyons), the estimated variances of the 

GNSS solution output from an unweighted LS may be overly optimistic due to the lack 
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of redundancy and possible multiple blunders in a single epoch (Mezentsev 2005); this 

information is unrealistic and strongly affects the integrated navigation solution. It was 

empirically demonstrated in this research that the WLS approach partially solves this 

problem. 

A WLS approach takes into account the different uncertainty of the measurements 

(Brogan 1981) and the obtained solution and covariance matrix are: 

  
1

ˆ T T

WLSx H WH H W z


    (5-1) 

  
1

ˆ

T

xC H WH


  (5-2) 

In literature different weighting criterions have been used, weighting the measurements 

according to certain observation parameters such as signal-to-noise ratio (Wieser 2001), 

satellite elevation (Satirapod and Wang 2000) or user equivalent range error (UERE) 

(Sairo et al. 2003). 

In this research the strategy proposed in Petovello 2003 is adopted, scaling the standard 

deviation of the measurement error at the Zenith by  1/ sin el , where el  is the satellite 

elevation angle. So the weight associated with the generic measurement is: 

 
 
2

sin
ii

m

el
w


  (5-3) 

where 

iiw  is the i
th

 element of the diagonal of the matrix W , 

2

m  is the measurement variance, equal to the PR variance 2

PR  or to the Doppler 

variance 2

PR
 . 

5.3.2 GNSS/INS Filter 

The main aim of the GNSS/INS filter in the LC architecture is to estimate the errors of 

the INS system and this is accomplished using the GNSS solution as external aiding 

(Godha 2006). The design of the KF process and measurement models is discussed 

below. 
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Process Model 

The basic state vector to estimate consists of the nine navigation parameter errors, i.e. 

the three position errors, the three velocity errors and the three attitude errors and their 

behavior is expressed by equation (2-28), which is reported below: 
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 is the shaping matrix, 

T
b b

w f w  
 

 is the forcing vector, consisting of the errors in the measured 

specific force and in the measured angular rates. 

 

Theoretically the equation (5-4) could be used as process model in the KF, but this not 

normally done because the inertial measurement errors do not meet the KF assumptions 

of zero-mean white noise and Gaussian behavior (Petovello 2003). Additional states 

must be added to the INS error model in order to account for the effects of the inertial 

sensor errors and the process of adding these states is called state augmentation (Gaylor 

2003). 

The inertial sensor errors are described in section 2.3.4; typically for high-end IMUs 

only the bias drift and the noise have to be considered and the measurement errors in 

equation (5-4) can be expressed as: 
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 (5-5) 

where 

T

a ax ay azb b b b        and 
T

g gx gy gzb b b b        are the accelerometer and 

the gyro biases, 

T

ax ay aza
        and 

T

gx gy gzg
        are the accelerometer and the gyro 

noises, whose spectral densities are 
a

q  and 
g

q . 

 

The bias drift must be modeled as an appropriate stochastic process and is often 

modeled as a first-order Gauss-Markov process (Petovello 2003) represented by the 

equations: 
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 (5-6) 

where 

the subscript “i” indicates the axis, i.e. it can be , ,i x y z , 

T

ba bax bay baz        are the correlation times for the accelerometers, 

T

bg bgx bgy bgz        are the correlation times for the gyros, 

T

bax bay bazba
        and 

T

bgx bgy bgzbg
        are the Gauss-Markov process 

driving noises, whose spectral densities are 
T

bax bay bazba
q q q q     and 

T

bgx bgy bgzbg
q q q q    . 

 

The Gauss-Markov correlation time and temporal standard deviation can be obtained 

using the autocorrelation analysis (Nassar 2003, El-Sheimy 2004) and the spectral 

density of the Gauss-Markov process driving noise can be computed as: 
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where 

T

ba bax bay baz        and 
T

bg bgx bgy bgz        are the Gauss-Markov 

process temporal standard deviations. 

 

Augmenting the basic state vector with the sensor bias states yields a 15 states filter, 

whose process model is: 
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where 
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. 

T
n n n

a gx r v b b      
 

 is the 15 parameters state vector. 

 

Typically for low cost MEMS inertial sensors, the turn on bias and the scale factor 

errors are high and must be taken into account; although deterministic in nature, they 

vary from one turn on to another and a calibration procedure should be necessary before 

each mission. However it is not feasible to calibrate the sensors so frequently and so a 

possible solution is to stochastically model these errors and to include them in the 

process model of a KF in order to estimate them (Godha 2006). 

The turn on bias can be modeled as a random constant process, because it remains 

constant for a particular run (Godha 2006). An alternative approach can be to include 

both turn on bias and bias drift in a single term; this idea is supported by their high 

correlation (Bancroft 2008), which shows that they represent the same phenomenon. 



 91 

This approach is convenient from the computational point of view, because it introduces 

a saving of six states (three turn on accelerometer biases and three turn on gyro biases) 

and the KF process model remains formally identical to (5-8). 

Usually it is not possible to split the bias and the scale factor error to model them 

separately; a possible way can be to lump them together and model them collectively or 

alternatively to use some a priori information about the parameters (e.g. as discussed in 

general terms in Petovello 2009). The second approach is herein used in which the scale 

factor is assumed to be slowing varying with time and so it can be modeled as first-

order Gauss-Markov process with large correlation time (Godha 2006), whose equation 

is: 
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where 

T

a ax ay azS S S S        and 
T

g gx gy gzS S S S        are the accelerometer 

and the gyro scale factors, 

T

sa sax say saz        are the correlation times for the accelerometer scale factors, 

T

sg sgx sgy sgz        are the correlation times for the gyro scale factors, 

T

sax say sazsa
        and 

T

sgx sgy sgzsg
        are the Gauss-Markov process 

driving noises, whose spectral densities 
T

sax say sazsa
q q q q     and 

T

sgx sgy sgzsg
q q q q     can be computed as: 
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 (5-10) 

where 

T

sa sax say saz        and 
T

sg sgx sgy sgz        are the Gauss-Markov process 

temporal standard deviations. 
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Augmenting the 15 state model (5-8) with the scale factor states yields a 21 states model 

as shown below: 
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(5-11) 

where 

1/ 0 0

0 1/ 0

0 0 1/

sax

sa say

saz



 



 
 

 
 
  

 and 

1/ 0 0

0 1/ 0

0 0 1/

sgx

sg sgy

sgz



 



 
 

  
  

, 

 
0 0

0 0

0 0

x

bb

y

z

f

F diag f f

f

 
 

 
 
  

 and  
0 0

0 0

0 0

x

bb

y

z

w

W diag w w

w

 
 

 
 
  

, 

the notation  diag   represents a diagonal matrix whose diagonal elements are the 

components of the vector between the brackets, 

T
n n n

a g a gx r v b b S S        
 

 is the 21 parameters state vector. 

 

The corresponding process noise spectral density matrix is expressed as: 
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 (5-12) 

In this work the experimentation is carried out on a specific low cost MEMS-based 

IMU, i.e. the Crista IMU sensor from the Cloud Cap Technology (Crista 

Interface/Operation Document 2004). 

The elements of the spectral density matrix (5-12) for Crista IMU are obtained using the 

methods defined in the current section and in 2.3.4 and are (Godha 2006, Li 2009): 
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 (5-13) 

 

Measurement Model 

The measurement model of the GNSS/INS filter in the LC architecture has the typical 

form: 

 z H x      (5-14) 

The measurement vector consists of the differences between the GNSS position and 

velocity and the INS position and velocity as shown below: 
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n n

GNSS INS

n n

GNSS INS

r r
z

V V


 
  

  

 (5-15) 

The geometry matrix is designed in order to observe directly the position and velocity 

misclosures as shown below: 

 
3 3 3 ( 6)

3 3 3 ( 6)

0 0

0 0

x n

x n

I
H

I





 
  
 

 (5-16) 

where n is the number of states of the filter. 

 

The measurement noise   is characterized by a spectral density R  assumed equal to the 

position/velocity covariance matrix from the GNSS only filter (equation (5-2). 

5.3.3 Kalman Filter State Vector Transformation 

Position error states expressed in radians are typically very small and can cause 

numerical instability inside the Kalman filter computations (Shin 2001), so it is 

preferred to express the position error states in East, North and Up coordinates. 

In general a state vector transformation involves a change in the process and in the 

measurement models. 

Recall the process model in the linear form (3-2): 

 x F x G w     (5-17) 

x  is the “old” state vector, i.e. the state vector before the transformation. 

Call x  the “new” state vector, i.e. the state vector after the transformation; the 

transformation between the two state vectors is performed by the matrix T  according to 

the equations: 

 
1

x T x

x T x

  

 

 (5-18) 

Taking the derivative of the first equation of (5-18) and substituting the second of 

(5-18) and the equation (5-17), yields: 



 95 

 
 

1

1 1

x T x T x TT x TF x TGw

TT TFT x TGw F x G w



 

      

      
 (5-19) 

where 

F   and G  are the new dynamic matrix and shaping matrix respectively. 

 

In the specific case of the GNSS/INS filter in the LC approach, the old and the new 

state vectors are (21 states): 

 

T
n n n

a g a g

T
n n n

a g a g
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 (5-20) 

and the transformation matrix T  is: 

 
3 ( 3)

( 3) 3 3
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 (5-21) 

where 

 
Tn

P E N U     is the position error state expressed in the ENU frame and 
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 is the matrix to transform 
n

r  in 
n

P  as shown below 
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The process model with the new state vector, obtained applying the equation (5-19), is: 
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(5-22) 

where 
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. 

 

In the measurement model (5-14), the measurements vector can be transformed as: 

 

n n

GNSS INS

n n

GNSS INS

P P
z

V V


 
  

  

 (5-23) 

and the design matrix remains as in (5-16), considering the new state vector expression 

(second equation in (5-20)). The units of  n n

GNSS INSP P  are meters. 

The spectral density of the measurement noise must take into account that the position 

error states are expressed in the ENU frame. 

5.4 Tightly Coupled Implementation 

In this work the TC architecture is implemented adopting a central KF to process the 

un-differenced GNSS raw pseudorange and Doppler measurements and the INS-derived 

corresponding observations; the details on both the measurement and the process 

models are in the section 5.4.1. 

5.4.1 GNSS/INS Filter 

The main aim of the GNSS/INS filter in the TC architecture is to estimate the errors of 

the INS system to correct the INS solution and to compensate the IMU sensor errors 

(Figure 5-2), using GNSS measurement as external aiding. 

Since the processing is centralized the GNSS/INS filter must account for the GNSS 

states too (Godha 2006), hence the LC GNSS/INS filter state vector should be 

augmented with the receiver clock states. 

The 15 parameters state vector in the LC architecture becomes: 

a 17 parameters state vector in GPS-only case 

   
T

n n n

a g offset driftx r v b b c t c t          
 

 

or 
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a 18 parameters state vector in GPS/GLONASS case 

     
T

n n n

a g offset drift sysx r v b b c t c t c t            
 

. 

 

Similarly the 21 parameters state vector becomes: 

a 23 parameters state vector in GPS-only case 

   
T

n n n

a g a g offset driftx r v b b S S c t c t            
 

 

or 

a 24 parameters state vector in GPS/GLONASS case 

     
T

n n n

a g a g offset drift sysx r v b b S S c t c t c t              
 

. 

 

Process Model 

The receiver clock states dynamic equations can be written as (Brown and Hwang 

1997): 

 

   offset drift offsetc t c t       

 drift driftc t    

(5-24) 

where 

offset  is the clock offset driving noise with spectral density offsetq  and 

drift  is the clock drift driving noise with spectral density driftq . 

 

The clock error spectral densities can be computed as (Brown and Hwang 1997): 

2 0

2
offset

h
q c   

2 2

22driftq c h     

where 0h  and 2h  are Allan variance parameters describing the clock errors; typical 

values for compensated crystal clock can be 2.0 19e  and 2.0 20e  respectively 

(Brown and Hwang 1997). 

 

The process model of the GNSS/INS KF in TC architecture with 23 states is obtained 

including equations (5-24) in the model (5-22): 
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(5-25) 

Similarly is obtained the process model with 17 states. 

 

The time difference between GPS and GLONASS systems is very stable (Cai and Gao 

2009) and so it can be modeled as random constant process, whose equation is: 

   0sysc t    (5-26) 

The 24 states process model is obtained simply adding the equation (5-26) in the model 

(5-25): 
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(5-27) 

 

Measurement Model 

In tightly coupled approach the measurement model of the GNSS/INS filter is the same 

as the measurement model of the GNSS LS estimator described in Chapter 4, i.e. 

equation (4-25) in GPS-only case and equation (4-30) in combined GPS/GLONASS 

case (the columns of the geometry matrix in correspondence of the states 

, , ,a g a gb b S S     are filled with zeros). 

The only difference is the linearization point, which is obtained from INS 

mechanization; the measurements are: 

 

INS

INS

PR PR

z
PR PR



 
 
 
 
 
 

 (5-28) 

where 
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INSPR  is the predicted pseudorange using INS-derived information, 

INSPR  is the predicted pseudorange derivative  using INS-derived information. 

As in the LC GNSS filter (5.3.1), the measurements are weighted according to their 

elevation and considering also the inherent accuracy related to the PR or Doppler 

observables (formula (5-3)). 

5.5 External Heading Aiding 

To improve the heading estimation an external heading aiding can be used; for instance 

measurements from magnetometers, gyrocompass or GPS can be adopted as external 

source (Shin 2001, Nayak 2000, Godha 2006). To incorporate external heading 

measurements into the measurement model of the GNSS/INS filter, an equation relating 

the heading errors with the system error states is required (Godha 2006). Such an error 

equation is derived starting from the expression of the azimuth as function of the 

elements of the rotation matrix ˆ n

bR  (third of equations (2-17)), written with the hats on 

the top to remark that the quantities are estimated: 

 
 

 

 

 

ˆ ˆ2,1 1,2
ˆ arctan arctan

ˆ ˆ2,2 2,2

b n

n b

b n

n b

R R

R R


   
    

   
   

 (5-29) 

From equations (2-27) and the third of (2-16), equation (5-29) becomes: 
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 (5-30) 

where 

N  and D  are the numerator and the denominator respectively of the  arctan  object. 

 

The heading error equation can be expressed as: 
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E N U

E N U

  
   

  

  
  
  

 (5-31) 

where 
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The values of 
ˆ

E








 and 

ˆ

N








 are very close to zero, and 

ˆ

U








 is approximately one, 

because an observation of azimuth is effectively an observation of U directly. 

 

The geometry matrix for the external heading aiding is: 

  1 3 1 3 1 9

ˆ ˆ ˆ
0 0 0x x x n

E N U

H

  

  


   
  

   
 (5-32) 

The measurement vector is: 

  INS External     (5-33) 

In this work the external heading aiding is obtained using horizontal components of the 

GPS-derived velocity and so the external azimuth source is (Shin 2005): 

 arctan E
External

N

V

V


 
  

 
 (5-34) 

and the associated variance is (Godha 2006): 

 

2

2

2

GPS

GPS

V

HV



   (5-35) 

where 

2

GPSV  is the variance of the GPS-derived velocity and 

2

GPSHV  is the horizontal GPS-derived velocity. 
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As it can be noticed in (5-35), the heading accuracy is inversely proportional to the 

horizontal velocity; for this reason, GPS heading is used only in case of sufficient speed 

(more than 5 m/s) (Godha 2006). 

5.6 Motion Constraints 

In absence of GNSS measurements, the INS performance degrades rapidly according to 

its grade. Moreover, navigation in scenarios such as urban canyons is characterized by 

long periods of lack of observable satellites. In these conditions the performance 

degradation with MEMS sensors is particularly severe owing to their large errors and 

noise levels (Godha 2006). 

In vehicular navigation a possible approach to avoid the INS error accumulation is to 

derive observations from the motion of the vehicle, i.e. it is possible to generate 

constraint equations reflecting the behavior of the vehicle during navigation (Shin 2001, 

Sukkarieh 2000). 

A first set of constraint equations can be derived considering that a vehicle essentially 

moves in the forward direction. A second constraint equation can be generated 

considering the fact that the height does not change significantly in land navigation 

during short time periods. Further details about the considered constraint equations are 

provided in the following sections. 

5.6.1 Velocity Constraints 

During typical vehicular navigation it can be assumed that the vehicle does not slip 

sideways or jump/bounce and so the motion is essentially in the forward direction. 

Recalling the definition of the body frame (Figure 2-2), these assumptions about the 

velocity can be described mathematically by the equations: 

 
0

0

b

x

b

z

v

v




 (5-36) 

where 

b

xv  and b

zv  are components of the vehicle velocity perpendicular to the forward direction 

(expressed in the body frame). 

 

To better represent the uncertainty in the considered assumptions, the equations (5-36) 

can be rearranged as: 
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 (5-37) 

where 

x  and z  are the (fictitious) measurement noises denoting the possible discrepancies in 

the above stated assumptions. 

 

To be used in the KF context, the velocity constraint equations must be expressed in the 

measurement model form (3-13). The measurement vector can thus be defined as: 

 
0

0

b b bb

x INSx INSxx

b b bb

z INSz INSzz

v v vv
z

v v vv





      
      

      
 (5-38) 

where 

b

INSxv  and b

INSzv  are the INS velocity components. 

 

In literature the standard deviation of the associated measurement noise Vconstr  is 

assumed to be equal to the projection of the forward velocity b

yv  in the lateral and up 

directions, because of the misalignment angle   (Godha 2006, Shin 2001): 

sinb

Vconstr yv    

In this research a different approach is carried out and a fixed value for the standard 

deviation is used, avoiding to relate the constraint uncertainty with the estimation of the 

velocity. 

Moreover the velocity constraint equations are adopted typically in vehicular navigation 

(Sukkarieh 2000); in this research the motion constrain equations are applied in 

pedestrian navigation context too, to assess the performance in this application; to adapt 

this aiding to the pedestrian case, the constraint uncertainty is increased with respect to 

the vehicular case. 

The standard deviation of the measurement noise in the vehicular application is 

empirically set to 0.5 m/s, while in the pedestrian application is set to 1 m/s. 
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In order to relate the measurement vector (5-38) to the state vector, the relationship 

between the velocity vector in the body and the ENU frames is perturbed: 
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 (5-39) 

and only the first order terms are collected: 

 ˆ ˆ ˆ
nb n nb b

n nV R V R V      (5-40) 

From the first and the last rows of equation (5-40) the design matrix is obtained: 
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 (5-41) 

where 

ˆ
ijR  is the element (i,j) of the matrix ˆ b

nR . 

 

The velocity constraint equations can be used when no GNSS measurements are 

available; in that case a complementary Kalman filter is implemented to merge inertial 

and constraint-derived information to prevent INS error unlimited growth. The scheme 

of the filter is shown in the Figure 5-3. 

 

Figure 5-3 – Velocity Constraint Kalman Filter 
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5.6.2 Height Constraint 

During a typical session of land navigation, the vehicle stays on the road and the height 

usually varies only few meters in a small region. So in case of lack of GNSS 

measurements the height of the vehicle can be considered equal to a predefined value 

(defined according to the topography of the territory) or to the last height estimation 

obtained in good measurement conditions (e.g. with a good DOP value). 

This assumption can be used to implement an alternative Kalman filter in case of GNSS 

outage, whose measurement vector is defined as: 

 ref INSz h h     (5-42) 

where 

refh  is the reference height and 

INSh  is the INS-derived height. 

 

The measurement noise standard deviation for these measurements depends on how the 

reference height is derived. If the height information is a predefined value, then the 

measurement uncertainty depends on the knowledge of the actual height variation for a 

particular region. If the height information is derived from a GNSS computation in good 

visibility condition, then the measurement standard deviation can be set to a relatively 

low value (few meters) for short GNSS outages. 

The design matrix is: 

 1 ( 3)0 0 1 0 x nH 
     (5-43) 

The proposed measurement model is particularly simple to implement owing to the INS 

mechanization in the ENU frame. The scheme of the filter using the height constraint is 

showed in Figure 5-4. 
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Figure 5-4 – Height Constraint Kalman Filter 

The velocity and height constraints can be use alternatively as showed in the Figure 5-3 

and Figure 5-4 or jointly during the GNSS outages; both constraint equations can also 

be used when GNSS measurements are available (Godha 2006). 
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Chapter 6  Test and Results 

This chapter describes some tests carried out with details about the adopted equipment, 

the operational environment and the implemented algorithms. The considered scenarios 

are the pedestrian and the vehicular navigation in urban canyon context. 

The GNSS only (single point positioning) results are presented to demonstrate the lack 

of continuity and accuracy of the solution in a signal degraded environment; then the 

navigation solution of an integrated system consisting of GNSS and INS MEMS-based 

sensors is shown, considering the configurations described in Chapter 4 and Chapter 5. 

The results obtained are compared with a reference solution achieved using an higher 

grade inertial sensor (specifically a tactical grade INS) and post-processing procedures. 

6.1 Pedestrian Test 

The term Pedestrian Navigation generally refers to navigation systems developed for a 

person on foot (Mezentsev 2005) and the MEMS sensors are suitable for pedestrian 

applications owing to their very small size and light weight (De Agostino 2010). 

A common pedestrian configuration (called PDR Pedestrian Dead Reckoning) uses the 

accelerometer signals to detect the steps (as a “step counter”), the gyro signals to 

determine the heading and the GNSS measurements to estimate the step length and to 

calibrate PDR parameters (step length and heading) in order to improve the navigation 

during GNSS absence (Godha et al 2006, Groves 2008). 

Another approach involves the use of conventional GNSS/INS algorithms, mitigating 

the large INS errors by placing the inertial unit on the foot to apply the ZUPT (Zero 

Velocity Updates) technique when the foot is at rest during the stance phase of the gait 

cycle (Bancroft et al 2008, Godha et al 2006). 

In this research conventional GNSS/INS navigation algorithms are used and the 

equipment is placed in an aluminum box and is brought back by a pedestrian as shown 

in Figure 6-1. To bound the large INS MEMS errors, frequent GNSS (both GPS and 

GLONASS) updates are used (20 Hz) and the motion constraint equations, described in 

5.6.1 and 5.6.2 and usually adopted in vehicular navigation, are applied (to be more 

suitable for pedestrian application, the constraint uncertainty is increased with respect to 

the vehicular application). 
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Figure 6-1 – Pedestrian Test Equipment 

 

6.1.1 Equipment 

The MEMS inertial unit used is a Crista IMU, produced by the US company Cloud Cap 

Technology Inc. The main characteristics of the IMU are in listed Table 2-2.  The Crista 

IMU is a very small (2.05” x 1.55” x 1.00”) and light (36.8 grams) three axis inertial 

sensor, able to provide temperature compensated accelerometer and gyroscopic data. 

The measurement range is 300°/s and 10g for accelerometers and gyros respectively and 

the analog signals are sampled with a 16 bit A/D converter; the data are provided via 

serial interfaces. The Crista IMU has a built-in GPS pulse per second (PPS) interface 

which allows the accurate time synchronization of IMU and GPS data (Crista 

Interface/Operation Document 2004). 

The receiver used is a NovAtel ProPak-V3 belonging to the OEMV family, and is a 

high-performance device able to provide L1 and L2 GPS+GLONASS positioning; the 

connected antenna is a high performance NovAtel 702 antenna. 

The Crista IMU and the NovAtel ProPak-V3 are the devices used to test the proposed 

algorithms for the GNSS/INS integrated system. 
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A low cost GNSS/INS integrated system should include both a low cost IMU and a low 

cost receiver; in this research a high grade receiver is used and so the results are 

expected to be optimistic with respect to a completely low cost integrated system 

(which will be the object of future work). 

The device used for generating a reference solution for error analysis is the NovAtel 

SPAN (Synchronous Position, Attitude and Navigation) system, consisting of a 

Honeywell HG1700 IMU and an OEM4 GPS receiver. The HG1700 IMU is a tactical 

grade inertial sensor providing low noise angular and acceleration data whose main 

characteristics are in listed Table 2-2; the inertial data are time tagged internally by the 

OEM4 receiver. Both the NovAtel ProPak-V3 and OEM4 receiver are connected to the 

same antenna through a signal splitter. The reference solution is computed in post-

mission, processing the inertial and the GPS data with the NovAtel Inertial Explorer 

software using the tightly coupled strategy and the double difference technique; the 

GPS base station for differential processing is equipped with a dual-frequency NovAtel 

OEM4 receiver connected to a high performance NovAtel 702 antenna, placed on the 

roof top of a building 6-7 km away from the test location. The reference solution 

accuracy in these conditions (as estimated by the NovAtel software) is summarized in 

Table 6-1. 

Table 6-1 – Reference Solution Accuracy 

Reference Accuracy 

Position dm level 

Velocity cm/s level 

Attitude <1deg 

 

The collected data are stored in a laptop; all the described devices and the batteries 

necessary to power them are placed in an aluminum backpack (Figure 6-1). 

6.1.2 Test Description 

The pedestrian test was conducted on May 14 2010 in early morning in downtown 

Calgary (Canada), which is characterized by tall buildings, blocking GNSS signals and 

creating multipath condition, and so is an example of urban canyon.  

Data collection begins in a parking lot with a static period of about 4 minutes (the 

aluminum box is placed on the ground) and good visibility condition (10 GPS and 6 

GLONASS satellites available).  
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Then the walking test continues among the downtown blocks for about half an hour, 

following the trajectory shown in Figure 6-2. 

First a small loop of about 600 meters, including one block, is covered in about 10 

minutes; afterward a loop of about 1 km, including two blocks is covered in 20 minutes, 

with a static period of two minutes in a relatively open area in between (in a small 

parking lot). The data collection is concluded in the starting point. 

 

 

Figure 6-2 – Pedestrian Test Trajectory 

 

6.1.3 GNSS Solution 

In this section the results of the GNSS only positioning are presented and compared 

with the reference solution. A single point positioning is obtained by processing 

pseudorange and Doppler observables epoch by epoch. Specifically the WLS algorithm 

described in Chapter 4 is used. 
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Figure 6-3 – Pedestrian Test: Visibility and GDOP 

In Figure 6-3 the number of visible GPS and GLONASS satellites and the 

corresponding GDOP values for GPS only and GPS/GLONASS combined constellation 

(indicated with GG) are shown. At the beginning, the number of visible satellites is 

large and the GDOP value low as the receiver is in a relatively open area (the parking 

lot). Going inside the downtown area, the number of visible satellites decreases, varying 

between 8 and 0 for GPS and between 4 and 0 for GLONASS; the GDOP values 

increase noticeably, reaching peaks of more than 100 (not shown in the figure for 

clarity). In the GPS only case, the reduced visibility (less than 4 satellites) and the poor 

geometry make the environment very demanding for navigation. Including the 

GLONASS satellites yields great benefits in both visibility and geometry (indeed the 

GDOP values are always lower in GG case). 

The benefit of including GLONASS can be seen in Figure 6-4 and Figure 6-5, showing 

the East, North and Up component errors in position and velocity respectively (the 

absolute values of the errors are plotted). The error, especially during the first minutes 

of the test, is nearly the same in both cases. The main benefit is in terms of solution 

continuity, as the GPS only solution is often unavailable for lack of satellites or bad 

geometry (solution with GDOP>30 are discarded) whereas the GG solution is more 

often available. To quantify this, the GPS only solution availability is about 82% and 

the GPS/GLONASS 90%. 
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Figure 6-4 – Pedestrian Test: GNSS only Position Error 

 

Figure 6-5 – Pedestrian Test: GNSS only Velocity Error 

The Table 2-1 summarizes the accuracy of the solutions, showing the maximum and 

RMS position and velocity errors. It can be noted that the accuracies in the GPS only 

and GPS/GLONASS cases are quite similar. The GG solution shows a larger maximum 

error is the North direction (shown in the middle subplot of Figure 6-4 around 08:07), 

affecting the corresponding RMS component; a smaller maximum error is shown on the 

Up direction of the GG solution. The velocity obtained with GPS and GLONASS shows 

slightly better results on all the components. 
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Table 6-2 – Pedestrian Test: RMS and Maximum Errors of GPS and 

GPS/GLONASS 

  RMS Error Maximum Error 

  East North Up East North Up 

GPS 
Position (m) 6,6 4,9 30,0 71,9 49,1 353,2 

Velocity (m/s) 0,2 0,2 0,6 1,8 3,0 6,4 

GPS/ 

GLONASS 

Position (m) 6,2 5,2 25,1 71,9 62,3 303,8 

Velocity (m/s) 0,1 0,2 0,4 1,4 2,4 6,2 

 

 

The RAIM algorithm described in 3.2 is applied, performing the global test on the 

residuals (3-28), to check the self-consistency of the measurements and the local test to 

identify possible blunders. 

The tested urban environment is often characterized by lack of redundancy necessary to 

identify possible blunders. Frequently during the test, it happens that 5-6 GPS satellites 

are available; although this number of satellites is sufficient to reject possible blunders 

and to compute solution, a more prudent approach is carried out wherein possible 

blunders are simply de-weighted 

6.1.4 GNSS/INS Integrated Results 

In this section the results of the GNSS/INS(MEMS) integration are presented and 

compared with the reference solution. The integrated system will provide a 100% 

solution availability as the navigation solution is bridged by INS prediction during GPS 

outages (Godha 2006). Hence the availability is not a meaningful indicator of system 

performance as in the GNSS only case, and the errors from the reference are more 

meaningful. 

The loose and the tight integrations are treated separately. First the results obtained with 

LC strategy are shown, considering different configurations (e.g. with a 15 or 21-states 

filter, with or without GLONASS, with or without aiding). Afterwards a similar 

approach is followed for the TC strategy and finally the results obtained with LC and 

TC integrations are compared. 

In each considered case the blunder detection strategy described in the previous section 

is carried out. 
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Results with Loosely Coupled Integration 

Herein the results obtained with LC strategy are presented, considering and comparing 

different configurations; specifically the following cases are discussed: 

 GPS/INS with a 15-state filter, 

 GPS/INS with a 21-state filter, 

 GG/INS with a 21-state filter, 

 GG/INS with a 21-state filter and velocity constraints and 

 GG/INS with a 21 state filter and velocity and height constraints. 

 

In the first configuration the GPS only and INS measurements are integrated with the 

LC strategy using a 15-state filter (the configuration is indicated as LC GPS/INS 15). 

This configuration can be considered as a basic configuration. From the obtained 

trajectory, shown in Figure 6-6, it can be noted that the configuration is able to follow 

the reference trajectory for most of the time; this happens when the number of visible 

satellites is sufficient to perform a GPS fix, correcting the INS errors and not allowing 

errors to grow and is facilitated by the GPS high rate (20 Hz). 

Great errors are only in the south zones of both Loops 1 and 2; these areas are critical 

because they are characterized by partial (1 to 3 satellites) or complete GPS outages (0 

satellites). 

 

Figure 6-6 – Pedestrian Test: Trajectory of LC GPS/INS 15 Configuration 

In Figure 6-7 the horizontal error (East and North error components) obtained with the 

LC GPS/INS 15 configuration and the “GPS Flag” parameter, indicating when the GPS 

fix is performed, are shown around the critical area. The Figure 6-7 clearly 
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demonstrates that when the GPS fix is performed, the horizontal error is small, whereas 

the number of available satellites or the observation geometry do not allow to perform 

an accurate GPS fix for several seconds, the position errors tend to increase. It can be 

noticed that after 08:26 a GPS outage of about 45 seconds begins and the horizontal 

error increases to more than 600 meters until the outage is broken by a few fixes and the 

errors jump back to few meters. 

 

Figure 6-7 – Pedestrian Test: Horizontal Errors of LC GPS/INS 15 Configuration 

and GPS Availability 

In Figure 6-8 the number of visible GPS satellites is plotted on the trajectory and the 

mentioned critical areas are circled. 

 

Figure 6-8 – Pedestrian Test: Number of Visible GPS Satellites on the Trajectory 
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A more complete overview of the obtained performance is provided by Table 6-3, 

showing the position and velocity maximum and RMS errors. The maximum position 

errors are of several hundred meters and occur during the above-defined critical areas. 

Table 6-3 – Pedestrian Test: RMS and Maximum Errors of LC GPS/INS 15 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 40,6 46,8 18,3 614,9 670,1 117,7 

Velocity (m/s) 3,1 3,0 0,4 39,3 32,3 2,9 

 

A typical approach to improve the integrated GPS/INS system performance during GPS 

outage is better model the INS errors to prevent error accumulation, for example 

including the sensor scale factors in the state vector. The trajectory obtained from the 

GPS/INS integration with a 21-state filter in LC architecture (indicated as LC GPS/INS 

21) is shown in Figure 6-9. The position results in this case are similar to the previous 

case, especially in areas with good visibility. In the above-mentioned critical areas the 

system performance is enhanced (relative to the 15 state case) as indicated by the 

maximum position errors in Table 6-4. 

 

Figure 6-9 – Pedestrian Test: Trajectory of LC GPS/INS 21 Configuration 
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Table 6-4 – Pedestrian Test: RMS and Maximum Errors of LC GPS/INS 21 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 24,4 27,0 15,9 395,6 388,7 120,9 

Velocity (m/s) 1,8 1,6 0,4 24,7 17,1 2,1 

 

The maximum horizontal position errors are almost halved and this performance can be 

attributed to a superior sensor error compensation with a 21-state filter; the maximum 

velocity errors are reduced significantly too. 

 

Including the GLONASS satellites, the GNSS solution availability increases 

significantly as shown in section 6.1.3; the type of positioning according to the visible 

satellites is plotted on the trajectory in Figure 6-10, showing that the coverage in the 

above-mentioned critical areas is improved. The trajectory obtained from the GPS-

GLONASS/INS integration with a 21-state filter in LC architecture (indicated as LC 

GG/INS 21) is presented in Figure 6-11 and shows a better agreement with the reference 

solution with respect to the other considered configurations. 

 

Figure 6-10 – Pedestrian Test: GPS/GLONASS Positioning on the Trajectory 
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Figure 6-11 – Pedestrian Test: Trajectory of LC GG/INS 21 Configuration 

The benefits of including GLONASS in the critical areas are evident in Table 6-5: the 

maximum horizontal errors are meaningfully reduced, affecting the RMS position errors 

too. Moreover both the RMS and maximum velocity errors benefit from the 

GPS/GLONASS combination. 

Table 6-5 – Pedestrian Test: RMS and Maximum Errors of LC GG/INS 21 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 19,9 11,1 12,3 333,2 178,1 110,6 

Velocity (m/s) 1,5 0,8 0,2 21,1 10,5 1,5 

 

Despite remarkable improvements obtained with LC GG/INS 21 configuration relative 

to LC GPS/INS 21 in terms of maximum and RMS position errors (Table 6-4 and Table 

6-5), the trajectory in Figure 6-11 shows a large drift in the critical area. In Figure 6-12 

the East and North error components obtained with the LC GG/INS 21 configuration 

and the “GNSS Flag” parameter, indicating when the GNSS fix is performed, are shown 

around the critical area; the errors during the GNSS outage just after 08:26 is reduced 

relative to GPS only case and the horizontal errors increase up to about 350 meters. The 

other long outage between 08:27 and 08:28 is reduced to about 30 seconds and is well 

bridged with the considered configuration. 
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Figure 6-12 – Pedestrian Test: Horizontal Errors of LC GG/INS 21 Configuration 

and GNSS Availability 

 

In the section 5.6 the use of motion constraints is introduced as a possible approach to 

reduce INS error accumulation during GNSS outages. In literature this specific 

approach is typically adopted in vehicular navigation (Godha 2006, Shin 2001, 

Sukkarieh 2000) as in this application the assumed motion constraint equations properly 

represent the actual motion. 

In this research the motion constrain equations are applied in pedestrian navigation 

context too, to assess the performance in this application; to adopt this approach the 

constraint uncertainty is increased with respect to the vehicular case. The standard 

deviation of the measurement noise in the vehicular application is empirically set to 0.5 

m/s, while in the pedestrian application is set to 1 m/s. 

 

The results obtained from the GG/INS integration with a 21-state filter in LC 

architecture and with the aid of the velocity constraints (section 5.6.1) is presented 

below (indicated as LC GG/INS 21 V). 
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Figure 6-13 – Pedestrian Test: Trajectory of LC GG/INS 21 V Configuration 

The trajectory obtained with the velocity constraints (Figure 6-13) shows remarkable 

improvements with respect to the other considered configurations; the large drift errors 

are no longer present as confirmed in Table 6-6, where the maximum horizontal errors 

are about 15-20 meters and the RMS errors only a few meters (one order of magnitude 

less than the other configurations). The velocity RMS and maximum errors are 

noticeably reduced too. The only critical parameters remains the altitude, whose 

maximum error is almost 100 meters, which is still less than the other cases by several 

meters. 

Table 6-6 – Pedestrian Test: RMS and Maximum Errors of LC GG/INS 21 V 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 3,5 3,3 10,9 21,0 15,0 96,1 

Velocity (m/s) 0,2 0,2 0,2 1,8 1,2 1,2 

 

The results obtained with LC GG/INS 21 V (shown in Figure 6-13 and Table 6-6) 

demonstrate the effectiveness of the velocity constraints (properly adapted) in a 

particular pedestrian application too; however it must be pointed out that these results 

are obtained in a specific arrangement with the IMU fixed on a box, brought back by a 

pedestrian (which somehow acts as a vehicle). More tests are necessary to demonstrate a 

more general effectiveness of this method in the pedestrian context. 
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The final configuration with LC architecture includes the height constraint in addition to 

the velocity constraint (indicated as LC GG/INS 21 VH). The obtained solution is 

summarized in Table 6-7. The height reference information is derived from a GNSS 

computation in good visibility condition (i.e. with low DOP value) and the 

measurement standard deviation is set to a relatively low value (5 meters). 

From the reference solution, the terrain has a range of altitude of few meters. 

Table 6-7 – Pedestrian Test: RMS and Maximum Errors of LC GG/INS 21 VH 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 4,0 3,5 3,1 35,5 17,7 4,4 

Velocity (m/s) 0,3 0,2 0,2 2,1 1,2 1,0 

 

Including the height constraint equation (section 5.6.2) too, the horizontal position 

degrades slightly (maximum error about 10 meters and RMS error half meter), but in 

return, the maximum and RMS altitude errors are reduced to few meters. 

A comparison between the altitude obtained using all the considered configurations so 

far is shown in Figure 6-14; it can be noted that each new component in the 

configuration yields a performance enhancement on the altitude too. The best altitude 

solution is obtained with the LC GG/INS 21 VH configuration, whose behavior is in 

agreement with the reference solution. 

 

Figure 6-14 – Pedestrian Test: Altitude Comparison between LC Configurations 
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A comparison among the trajectories obtained from the considered implementations of 

the GNSS/INS integration in loosely coupled architecture are presented in Figure 6-15. 

The horizontal solution of the configurations including GPS only shows very large 

errors during the GPS outages, evidently reduced including the GLONASS 

measurements. The more accurate solutions are obtained including the velocity and 

height constraints, showing small disagreements with the reference in the critical area 

too. Between the two considered configurations with constraint aiding, i.e. LC GG/INS 

21 V and LC GG/INS 21 VH, a slight better horizontal solution is obtained in the first 

case which shows a smaller disagreement in the South-West corner of the trajectory. 

 

Figure 6-15 – Pedestrian Test: Trajectories obtained with the LC Architecture 

To perform a concise comparison among the more meaningful configurations with LC 

architecture, the RMS errors of position and velocity are represented with a bar chart in 

Figure 6-16. Including GLONASS measurements, the improvements (relative to GPS 

only) in terms of all the considered parameters result evident. The configurations 

including the constraints show superior performances in terms of both position and 

velocity errors. The configurations including velocity constraints only and 

velocity/height constraints show similar errors in horizontal position, but the last shows 

better performance in altitude, influencing the 3D error too; the velocity errors are very 

similar for LC GG/INS 21 V and LC GG/INS 21 VH configurations. 
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Figure 6-16 – Pedestrian Test: Comparison between LC Configurations in terms of 

Position and Velocity RMS Errors 

Results with Tightly Coupled Integration 

Now the results obtained with TC integration strategy are presented and compared with 

the just shown LC performance. 

The basic TC configuration includes the integration of GPS only and INS with a 17-

state filter (and is indicated as TC GPS/INS 17). The trajectory obtained in this 

configuration is shown in Figure 6-17. The solution is quite accurate during almost the 

whole test and degrades clearly in the critical areas described before because of the lack 

of GPS measurements; the maximum errors (Table 6-8) quantify the amount of the 

disagreement in the critical areas. 

 

Figure 6-17 – Pedestrian Test: Trajectory of TC GPS/INS 17 Configuration 
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Table 6-8 – Pedestrian Test: RMS and Maximum Errors of TC GPS/INS 17 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 6,2 8,0 24,4 51,4 116,3 143,1 

Velocity (m/s) 0,4 0,7 0,5 4,5 9,4 4,1 

 

A comparison of the two basic configurations for the loose and tight strategies, i.e. LC 

GPS/INS 15 and TC GPS/INS 17, is performed to assess the basic performance of the 

two architectures. Comparing Figure 6-6 and Figure 6-17 and Table 6-3 and Table 6-8, 

it can be noted that the TC integration results are characterized by much smaller 

maximum errors both in position and velocity because with a tightly strategy it is 

possible to compute an integrated solution during partial GPS outages. In contrast, the 

LC strategy can carry out an integrated solution only if the number of available satellites 

allows to perform a GPS only positioning (or in general GNSS positioning). The 

position error comparison between the two configurations is presented in Figure 6-18, 

where the better TC performance is evident. In the critical areas, around 08:09 and 

08:27, the TC configuration is able to restrain the East error within 50 meters, whereas 

in the LC case the errors are much larger; the North error of TC configuration is larger 

than 100 meters, but much smaller than the LC case (around 08:26). 

 

Figure 6-18 – Pedestrian Test: Horizontal Error Comparison between LC 

GPS/INS 15 and TC GPS/INS 17 

The integration of GPS and INS in a TC strategy, including in the state vector the scale 

factors of the INS sensors, uses a 23-state filter and shows results very similar to the 17-

state case. The TC GPS/INS 23 results are compared with LC GPS/INS 21 and LC 
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GG/INS 21 in terms of position and velocity RMS errors in the bar chart in Figure 6-19. 

The TC GPS/INS 23 configuration shows definitely smaller horizontal errors, but 

slightly larger altitude errors (relative to the two LC considered configurations). In can 

be noted that TC GPS/INS 23 and LC GG/INS 21 show similar 3D RMS errors, 

indicating comparable performances; this can suggest that including GLONASS 

satellites in LC architecture can change the role of loosely coupling in urban navigation 

(where usually the tight integration is preferred). 

 

Figure 6-19 – Pedestrian Test: Comparison between TC GPS/INS 23, LC GPS/INS 

21 and LC GG/INS 21 Configurations in terms of Position and Velocity RMS 

Errors 

The results obtained including both GPS and GLONASS satellites in a TC integrated 

system GNSS/INS, adopting a 24-state filter (including the sensor scale factors) are now 

presented (the configuration is indicated as TC GG/INS 24). The obtained trajectory is 

shown in Figure 6-20 and exhibits an evident improvement in the position solution 

(relative to TC GPS/INS 17 and TC GPS/INS 23 cases), owing to the increased satellite 

availability. The position and velocity RMS and maximum errors are summarized in 

Table 6-9, showing few meters of RMS horizontal error and about 20 meters of 

maximum error; the maximum altitude error is large (about 100 meters). 
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Figure 6-20 – Pedestrian Test: Trajectory of TC GG/INS 24 configuration 

 

Table 6-9 – Pedestrian Test: RMS and Maximum Errors of TC GG/INS 24 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 3,1 3,6 12,5 19,1 18,2 106,5 

Velocity (m/s) 0,2 0,3 0,2 0,9 2,7 1,5 

 

A comparison between the TC GG/INS 24 configuration and the corresponding loose 

coupling solution, i.e. the LC GG/INS 21 configuration, is carried out to emphasize the 

difference of performances of the two integration architectures in case of GLONASS 

inclusion. For this purpose the position errors are directly compared on the Figure 6-21, 

which clearly indicates the benefit of including GLONASS in this context too; only the 

altitude error remains large. 

In Figure 6-21 the superior performance of the TC GG/INS 24 configuration relative to 

the corresponding loose case is demonstrated; a further comparison can be carried out 

with the loose integration cases including the motion constraints, i.e. LC GG/INS 21 V 

and LC GG/INS 21 VH to assess the effectiveness of loose approach in urban 

environment. 



 128 

 

Figure 6-21 – Pedestrian Test: Position Error Comparison between LC GG/INS 21 

and TC GG/INS 24 Configurations 

 

Figure 6-22 – Pedestrian Test: Comparison between TC GG/INS 24, LC GG/INS 

21, LC GG/INS 21 V and LC GG/INS 21 VH Configurations in terms of Position 

and Velocity RMS Errors 

In Figure 6-22 it is shown that adding velocity constraints to the LC GG/INS integration 

yields performance comparable with TC GG/INS case and adding height constraints too 

produces further improvements in terms of altitude and consequently of 3D RMS errors. 

This can make preferable to use LC architecture respect to TC, considering the 

modularity and flexibility of LC and that the motion constraints do not involve further 

cost, not involving actual sensors (Klein et al. 2010). 
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The final case is the integration of GPS-GLONASS and INS measurements in TC 

strategy with a 24-state filter and with the combined use of velocity and height motion 

constraints (indicated as TC GG/INS 24 VH); the obtained trajectory is shown in Figure 

6-23 and the errors are summarized in Table 6-10. The use of the motion constraints 

further improve the performance of the integrated system, bringing the RMS errors to 

about 3 meters on horizontal position and 4.5 on altitude and RMS velocity errors to 0.2 

m/s. 

 

Figure 6-23 – Pedestrian Test: Trajectory of TC GG/INS 24 VH Configuration 

 

Table 6-10 – Pedestrian Test: RMS and Maximum Errors of TC GG/INS 24 VH 

Configuration 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 2,5 3,2 4,5 21,1 11,4 6,6 

Velocity (m/s) 0,2 0,2 0,2 0,9 1,3 1,1 

 

To conclude this section a comparison is carried out between the best configurations 

obtained with LC and TC approaches, i.e. LC GG/INS 21 and TC GG/INS 24 both with 

velocity and height constraint aiding. 

A position error comparison is carried out in Figure 6-24, showing a slightly better 

result for the TC approach on the East and North components and a slight advantage for 

the LC approach on the Up component. 
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A velocity error comparison is carried out in Figure 6-25, showing a quite similar error 

behavior of all the three components with only lower spikes in the East component of 

the TC case. 

 

Figure 6-24 – Pedestrian Test: Position Error Comparison between LC GG/INS 21 

VH and TC GG/INS 24 VH Configurations 

 

Figure 6-25 – Pedestrian Test: Velocity Error Comparison between LC GG/INS 21 

VH and TC GG/INS 24 VH Configurations 

In Table 6-11 a position error analysis is performed, considering the maximum and 

RMS horizontal, vertical and 3D error. From Table 6-11 it can be noted that the global 

performances of the two configurations are very similar; the TC configuration has a 

lower RMS horizontal error but a larger vertical error (only a difference of 1 meter in 

both cases). More interesting is the difference in the maximum error: the TC 
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configuration has a maximum horizontal error (and consequently a 3D error) about 15 

meters lower than LC. 

Table 6-11 – Pedestrian Test: LC GG/INS 21 VH versus TC GG/INS 24 VH 

(Position Error Analysis) 

 RMS Error (m) Maximum Error (m) 

 Horizontal Vertical 3D Horizontal Vertical 3D 

LC GG/INS 21 VH 5,3 3,1 6,1 36,1 4,4 36,2 

TC GG/INS 24 VH 4,1 4,5 6,0 22,6 6,6 22,9 

 

To summarize the performances obtained in the pedestrian test, the more meaningful 

configurations considered with LC and TC architectures are compared in Figure 6-26. 

 

Figure 6-26 – Pedestrian Test: Comparison between LC and TC Architectures in 

terms of Position and Velocity RMS Errors 

The main remarks deduced from the errors overview in Figure 6-26 are: 

- In case of GPS/INS integration, TC architecture provides significantly better 

horizontal solution and slightly worse altitude result than LC; 

- Including GLONASS observations in the integrated system GPS/INS provides 

meaningful performance improvements for both LC and TC architectures and 

for both position and velocity estimation; 
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- In case of GG/INS integration, TC architecture provides a better horizontal 

solution and similar altitude result relative to LC; 

- The configurations LC GG/INS 21 and TC GPS/INS 23 provide very similar 

performance suggesting that the former might be a good (and relatively simple) 

replacement for the latter; 

- Including velocity and height constraints produces significant improvements of 

LC and TC performance in terms of both position and velocity; 

- The results obtained with the configurations LC GG/INS 21 V and TC GG/INS 

24 V are very similar; 

- The results obtained with the configurations LC GG/INS 21 VH and TC 

GG/INS 24 VH are very similar. 

 

6.2 Vehicular Test 

In this section a vehicular test is described and the results of different GNSS/INS 

configurations are presented. An similar approach to that adopted in the pedestrian 

experiment is carried out for the data analysis. First the GNSS only solution is presented 

and the satellite visibility is analyzed. Then an integrated basic configuration is 

analyzed and the various constraints are applied to find the best solution. 

In the vehicular navigation context the attitude angles (especially the azimuth angle) 

become significant and are therefore analyzed in addition to position and velocity of the 

vehicle. The typical speeds characterizing the car navigation allow the use of the GNSS 

external heading aiding described in 5.6. 

6.2.1 Equipment and Test Description 

The adopted equipment used for this test is essentially the same used in the pedestrian 

test described in 6.1.2, namely: 

- a Crista IMU device (MEMS-based) and  

- a NovAtel ProPak-V3 receiver (GPS/GLONASS) 

to test the proposed algorithms for the GNSS/INS integration and  

- the NovAtel SPAN integrated system  

to generate a reference solution with the accuracy summarized in Table 6-1 (processing 

the SPAN data in post-mission as described in 6.1.1). 

 

All the equipment is placed on the roof of the car as shown in Figure 6-27. 
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Figure 6-27 – Vehicular Test Equipment 

The data collection was carried out in a vehicle in downtown Calgary, Canada on 22nd 

July 2010 in the afternoon (about 2:00 pm local time). As previously mentioned 

downtown Calgary is a typical urban scenario, characterized by skyscrapers and so it is 

a difficult environment for satellite navigation because of blocking and multipath 

problems. The test begins in a small parking lot with a static period of 4 minutes, 

characterized by good visibility condition (9 GPS and 5 GLONASS available satellites) 

and continues into the downtown core where the number of visible satellites decreases 

significantly. The test finishes outside downtown with good visibility conditions. The 

total duration of the test is about 23 minutes; the speed of the vehicle varies from 0-50 

km/h with frequent stops due to the traffic lights and the total distance travelled is about 

10 km. The trajectory followed by the car is shown in Figure 6-28. 

 

Figure 6-28 – Vehicular Test Trajectory 

6.2.2 GNSS Solution 

In this section the epoch by epoch single point GNSS only solution, obtained processing 

the pseudorange and Doppler observables with the WLS method, is provided. The 
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number of visible GPS and GLONASS satellites is shown in Figure 6-29, with the 

corresponding GDOP behavior in the GPS only and GPS/GLONASS cases. 

 

Figure 6-29 – Vehicular Test: Visibility and GDOP 

The beginning of the test in a relatively open area is characterized by a large number of 

visible satellites and a low GDOP values, i.e. a good observation geometry. The test 

continues in a severe environment with a number of visible satellites decreases to 

between 6 and 0 for GPS and between 4 and 0 for GLONASS, with a noticeably 

degraded observation geometry (GDOP values larger than 30 are not plotted). The final 

part of the test is again in an open sky scenario (more than 10 available GPS satellites). 

The test environment is very demanding for GPS only navigation, which is often 

inaccurate (owing to the bad geometry) or impossible (owing to the lack of 

observations); the inclusion of GLONASS improves the solution availability. 

The GPS only solution availability is about 63% and the GPS/GLONASS availability is 

68%, showing that the considered environment is very demanding (more so than the 

scenario considered in 6.1.2). This is primarily attributed to the fact that the previous 

test was conducted mostly on the edge of the downtown core, whereas this test passes 

directly through the center. 

6.2.3 GNSS/INS Integrated Results 

In this section the results obtained by integrating GNSS and INS MEMS-based data are 

discussed. To facilitate the data analysis, three segments of trajectory are considered and 

examined separately (Figure 6-30).  
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Figure 6-30 – Vehicular Test: Segments of Trajectory 

Segment 1 

The segment 1 is approximately 2.5 km long, and was travelled in about 7 minutes. The 

first part is characterized by a good visibility (5-11 GPS satellites and 0-7 GLONASS 

satellites), followed by an area with few visible satellites (0-4 GPS and 0-2 

GLONASS); in the final part of the segment 6 GPS satellites and 3 GLONASS are in 

view (Figure 6-31). 

The GPS solution availability is about 73% and the GPS/GLONASS solution 

availability is about 81%. 

 

Figure 6-31 – Vehicular Test: Visibility (Segment 1) 

The number of visible GPS satellites is plotted on the segment trajectory in Figure 6-32, 

showing frequent partial and total GPS outages, particularly in the second part of the 
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long straight stretch and around the second and third turn (located near the center of 

downtown Calgary); the longest GPS outage (less than 4 satellites) duration is about 60 

seconds between the just mentioned turns (highlighted by a dotted circle in Figure 

6-32). 

In case of GLONASS satellite inclusion, the above-mentioned outage is interrupted by a 

combined GPS/GLONASS fix as shown in Figure 6-33.  

 

Figure 6-32 – Vehicular Test: Number of Visible GPS Satellites on Trajectory  

(Segment 1) 

 

Figure 6-33 – Vehicular Test: GPS/GLONASS Positioning on the Trajectory    

(Segment 1) 
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With this in mind, the benefit of GLONASS inclusion is clear in Figure 6-34, showing 

the trajectories obtained with the LC GPS/INS 21 and LC GG/INS 21 configurations. 

The isolated GPS/GLONASS fix (circled in Figure 6-33) which interrupts the largest 

GPS outage, allows the trajectory to stay relatively near the reference between the 

second and the third turns, whereas without GLONASS large errors occur. The LC 

GG/INS 21 configuration provides better performance also during the second part of the 

long straight stretch (between easting values of 705000 and 705200), where LC 

GPS/INS 21 error tends to grow owing to short GPS only outages (15-20 seconds 

duration). 

 

 

Figure 6-34 – Vehicular Test: Trajectory of LC GPS/INS 21 and LC GG/INS 21 

Configurations (Segment 1) 

 

Table 6-12 and Table 6-13 summarize the comparison between the considered 

configurations, providing the position, velocity and attitude errors (RMS and 

maximum). The configuration including GLONASS measurements shows significantly 

better performance in terms of all the considered parameters. 
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Table 6-12 – Vehicular Test: RMS and Maximum Errors of LC GPS/INS 21 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 48,4 48,7 16,3 347,0 341,2 48,0 

Velocity (m/s) 4,6 3,6 0,3 26,5 22,4 1,1 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 1,4 1,7 34,5 4,2 7,4 79,9 

 

Table 6-13 – Vehicular Test: RMS and Maximum Errors of LC GG/INS 21 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 20,2 15,0 8,0 109,6 51,2 34,4 

Velocity (m/s) 1,6 1,2 0,3 7,7 9,6 1,4 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 1,4 1,2 24,5 4,1 7,4 65,6 

 

In the above error tables it is notable that the maximum yaw error (and thus the RMS 

error) is very large relative to roll and pitch; this is because in the absence of horizontal 

acceleration (stationary vehicle) the yaw errors are not very well observable and thus 

the error grows (Godha 2006). However, when the vehicle moves, the yaw tends to 

converge, but the converged value, owing to large sensor noise and poor observability, 

has large errors. 

A possible approach to improve the accuracy of the estimated yaw and to aid the 

convergence process is to explicitly use GNSS-derived yaw as an external aid (as 

explained in 5.5). The GNSS-derived yaw is computed using the formula (5-34) and its 

accuracy is expressed by (5-35), so the yaw accuracy is inversely proportional to the 

GNSS-derived horizontal velocity. From Figure 6-35 it is shown that when GNSS-

derived horizontal velocity is larger than 5 m/s, the GNSS-derived yaw agrees well with 

the reference and only in that case the considered yaw aiding is used. 
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Figure 6-35 – Vehicular Test: GNSS-derived Horizontal Velocity and Yaw 

The effectiveness of the GNSS-derived yaw aiding is shown by assessing the navigation 

solution obtained in the configuration LC GG/INS 21 with yaw aiding (indicated as LC 

GG 21 Y) and comparing it with the no yaw aiding case. The trajectories obtained with 

the two configurations are shown in Figure 6-36; the yaw external aiding yields solution 

improvements, reducing the disagreements with the reference. The spike on the 

trajectory obtained without the aiding (circled in Figure 6-36) is smoothed. Table 6-14 

summarizes the errors, and shows improvements on all the navigation parameters 

relative to Table 6-13. 

 

Figure 6-36 – Vehicular Test: Trajectory of LC GG/INS 21 and LC GG/INS 21 Y 

(Segment 1) 
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Table 6-14 – Vehicular Test: RMS and Maximum Errors of LC GG/INS 21 Y 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 15,0 12,9 7,6 80,1 48,2 33,1 

Velocity (m/s) 1,3 0,5 0,3 5,8 2,1 1,3 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 0,9 0,9 15,4 3,6 7,4 49,5 

 

As in the pedestrian test (section 6.1.4), motion constraint equations on velocity and 

height (section 5.6) can be included to further enhance the integrated system 

performance. The configuration obtained adding the velocity constraints to the LC 

GG/INS 21 Y configuration is referred to as LC GG/INS 21 YV; the configuration 

obtained adding the height constraint too is referred to as LC GG 21 YVH. 

The trajectories obtained with both LC GG/INS 21 YV and LC GG/INS 21 YVH 

configurations are compared with the configuration LC GG/INS 21 Y in Figure 6-37. In 

the area circled in Figure 6-37 it is evident the improvements obtained including the 

motion constraints which allow a better agreement with the reference; comparing the 

trajectories obtained considering only the velocity constraints and the velocity/height 

constraints results a better behavior in the last case as shown in circled area. 

 

Figure 6-37 – Vehicular Test: Trajectory of LC GG/INS 21 Y, LC GG/INS 21 YV 

and LC GG/INS 21 YVH (Segment 1) 
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The LC GG/INS 21 YV and LC GG/INS 21 YVH errors are summarized in Table 6-15 

and Table 6-16; in the first case the maximum position error is about 40 and the RMS 

less than 10 meters. In the last case the maximum position error is reduced to 30 meters 

and the RMS error is almost unchanged; in the last case the maximum azimuth error 

worsen of some degrees. 

The application of the motion constraints reduces significantly the position, the velocity 

and the azimuth errors with respect to the previously considered case (LC GG/INS 21 

Y). 

Table 6-15 – Vehicular Test: RMS and Maximum Errors of LC GG/INS 21 YV 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 8,1 6,6 3,8 41,9 40,0 8,8 

Velocity (m/s) 0,6 0,5 0,1 2,4 4,3 0,3 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 0,7 0,9 4,9 3,0 3,0 14,1 

 

Table 6-16 – Vehicular Test: RMS and Maximum Errors of LC GG/INS 21 YVH 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 7,9 5,6 3,9 33,9 20,5 6,3 

Velocity (m/s) 0,7 0,4 0,1 3,0 2,0 0,3 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 0,7 1,0 6,5 3,0 3,0 22,3 

 

To perform a concise comparison among the analyzed configurations with LC 

architecture, the RMS errors of position, velocity and attitude are represented with a bar 

chart in Figure 6-38. 
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Figure 6-38 – Vehicular Test: Comparison between LC Configurations in terms of 

Position, Velocity and Attitude RMS Errors (Segment 1) 

From Figure 6-38 it results clear the benefit of including GLONASS observations in the 

integrated system in terms of all the navigation parameter errors; adding the GNSS-

derived azimuth aiding strongly influences the azimuth estimation and reduces the 

position and velocity errors too. Using the motion constraints further improves the 

integrated system performance in term of all the considered parameters; the two 

constraint-aided configurations LC GG/INS YV and LC GG/INS YVH provide similar 

RMS errors of about 10 meters in 3D position. 

 

Unlike LC architecture, the TC architecture is able to compute an integrated position in 

case of partial GNSS outages too; this makes the TC usually more effective in the urban 

environment (characterized by frequent partial outages). For this reason, the TC 

GPS/INS 23 configuration, whose trajectory is shown in Figure 6-39 (cyan line), shows 

better performance than the corresponding LC configuration (LC GPS/INS 21 

represented by green line), without large drift in the trajectory. 

Including GLONASS observations in the TC GPS/INS 23 configuration, the TC 

GG/INS 24) configuration is obtained, which shows only slight enhancements in the 

solution (magenta line in Figure 6-39) relative to TC GPS/INS 23 case. 
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Figure 6-39 – Vehicular Test : Trajectories of LC GPS/INS 21, LC GG/INS 21, TC 

GPS/INS 23 and TC GG/INS 24 Configurations (Segment 1) 

The RMS errors obtained with the four configurations, LC GPS/INS 21, LC GG/INS 

21, TC GPS/INS 23 and TC GG/INS 24, are analyzed in Figure 6-40. 

LC GPS/INS 21 configuration shows large errors, which are strongly reduced in the 

corresponding TC case (TC GPS/INS 23) or including GLONASS measurements in LC 

architecture (LC GG/INS 21). LC GG/INS 21 and TC GPS/INS 23 configurations 

demonstrate very similar performances for all the navigation parameters, which is 

consistent with the pedestrian results as well. Both solutions are only slightly worse 

than the TC GG/INS 24 case. 

 

Figure 6-40 – Vehicular Test: Comparison between Configurations LC GPS/INS 

21, LC GG/INS 21, TC GPS/INS 23 and TC GG/INS 24 in terms of Position, 

Velocity and Attitude RMS Errors (Segment 1) 
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To further improve the TC solution, similar to what was done with LC approach, the 

GNSS-derived yaw aiding and the velocity and height motion constraints can be 

included in the integrated system GNSS/INS; the configurations including the yaw 

aiding (TC GG/INS 24 Y), the velocity constrains and the yaw aiding (TC GG/INS 24 

YV) and the velocity/height constraints and the yaw aiding (TC GG/INS 24 YVH) are 

considered and the obtained trajectories are presented in Figure 6-41. The trajectory 

obtained with TC GG/INS 24 Y configuration shows some disagreements between the 

second and the third turns, while including the motion constraints a small drift is present 

on the long East-West straight stretch. 

 

Figure 6-41 – Vehicular Test: Trajectories of TC GG/INS 24 Y, TC GG/INS 24 YV 

and TC GPS/INS 24 YVH Configurations (Segment 1) 

To better perform a comparison among the analyzed configurations with TC 

architecture, the RMS errors of position, velocity and attitude are represented with a bar 

chart in Figure 6-42.  

The enhancements of including GLONASS observations are most notable on the 

horizontal position (dark blue and blue bars representing TC GPS/INS 23 and TC 

GG/INS 24 configurations respectively). The GNSS-derived yaw aiding improves 

significantly the azimuth estimation, slightly degrading the position errors (by few 

meters of RMS error). Adding the velocity constraints too, clearly improves the 

integrated system performance in terms of all the navigation parameters (with only a 

loss of accuracy in azimuth estimation). Finally also using the height constraint (i.e. 

configuration TC GG/INS 24 YVH), the best results for the TC architecture are 
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obtained; the RMS and maximum errors in position, velocity and attitude are 

summarized in Table 6-17. 

 

Figure 6-42 – Vehicular Test: Comparison between TC Configurations in terms of 

Position, Velocity and Attitude RMS Errors (Segment 1) 

 

Table 6-17 – Vehicular Test: RMS and Maximum Errors of TC GG/INS 24 YVH 

Configuration (Segment 1) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 4,8 9,5 4,0 18,4 30,5 6,4 

Velocity (m/s) 0,4 0,6 0,1 2,0 3,0 0,3 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 0,7 0,7 6,9 2,8 3,0 23,2 

 

 

To summarize the performances obtained in the segment 1 of the vehicular test, the 

more meaningful configurations considered with LC and TC architectures are compared 

in Figure 6-43. 
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Figure 6-43 – Vehicular Test: Comparison between LC and TC Architectures in 

terms of Position and Velocity RMS Errors (Segment 1) 

The main remarks deduced from the errors overview in Figure 6-43 are: 

- In case of GPS/INS integration, TC architecture provides significantly better 

horizontal solution and similar altitude result than LC; 

- Including GLONASS observations in the integrated system GPS/INS provides 

meaningful performance improvements for both LC and TC architectures and in 

terms of position, velocity and azimuth estimation; 

- In case of GG/INS integration, TC architecture provides only slightly better 

solution relative to LC; 

- The configurations LC GG/INS 21 and TC GPS/INS 23 provide very similar 

performance, as in the pedestrian case; 

- Including GNSS-derided azimuth aiding and velocity/height constraints 

produces significant improvements of LC and TC performance in terms of 

position, velocity and azimuth; 

- The results obtained with the configurations LC GG/INS 21 YVH and TC 

GG/INS 24 YVH are very similar. 

 

Segment 2 

The segment 2 is approximately 3 km long, travelled in about 7 minutes. The number of 

visible GPS satellites on the trajectory is presented in Figure 6-44, showing two long 

partial/total GPS outages (about 60 seconds) on the two east/west straight sections, 

connected by a turn with a sufficient visibility to continuously perform a GPS fix. The 
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inclusion of GLONASS (Figure 6-45) does not allow a reduction in the outage 

durations; in fact the GPS solution availability is about 53% and the GPS/GLONASS 

solution availability is only 55%. 

 

Figure 6-44 – Vehicular Test: Number of Visible GPS Satellites on the Trajectory 

(Segment 2) 

 

Figure 6-45 – Vehicular Test: Positioning on the Trajectory (Segment 2) 

In these severe conditions, a solution including only GPS and INS measurements 

merged in a LC approach (LC GPS/INS 21) presents large errors during the GPS 

outages (green line in Figure 6-46). The inclusion of GLONASS does not improve 

visibility in the critical areas, so the solution of LC GG/INS 21 configuration shows 

similar large errors (purple line in Figure 6-46). The constraints considered in this 

research are tested to try to improve the results in loose architecture; the solution of LC 



 148 

GG/INS 21 YVH configuration presents however large disagreements with the 

reference during the long GNSS outages. 

 

Figure 6-46 – Vehicular Test: Trajectory of LC GPS/INS 21, LC GG/INS 21 and 

LC GG/INS 21 YVH Configurations (Segment 2) 

Hence it is clear that the LC approach does not provide satisfying performances for each 

tested configuration. The analysis thus shifts to the TC solution where superior 

performance is obtained. 

The solution including only GPS and INS measurements integrated in a TC approach 

(TC GPS/INS 23) does not present large errors during the GPS outages as in the 

corresponding LC case; in Figure 6-47 the trajectory obtained is shown (green line). 

A slightly better trajectory is obtained by including GLONASS measurements 

(configuration TC GG/INS 24), as shown in Figure 6-47 with the purple line. 

A further trajectory improvement is obtained including the yaw and the motion 

constraints (configuration TC GG/INS 24 YVH) as shown in Figure 6-47 with the cyan 

line. The errors of position, velocity and attitude of this configuration are summarized in 

Table 6-18. The maximum position errors (and consequently the RMS errors) are 

significantly larger with respect to the segment 1, owing to the very severe scenario. 
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Figure 6-47 – Vehicular Test: Trajectory of TC GPS/INS 23, TC GG/INS 24 and 

TC GG/INS 24 YVH Configurations (Segment 2) 

 

Table 6-18 – Vehicular Test: RMS and Maximum Errors of TC GG/INS 24 YVH 

Configuration (Segment 2) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 7,3 18,3 3,3 24,4 68,2 6,8 

Velocity (m/s) 0,5 1,1 0,1 2,1 5,1 0,4 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 1,1 1,1 10,9 3,3 3,9 49,4 

 

To summarize the performances obtained in the segment 2 of the vehicular test with the 

TC architecture, the more meaningful configurations are compared in Figure 6-48. 
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Figure 6-48 – Vehicular Test: Comparison between TC Configurations in terms of 

Position, Velocity and Attitude RMS Errors (Segment 2) 

The main remarks deduced from the errors overview in Figure 6-48 and from the 

analysis carried out in the current sub-section are: 

- The GNSS/INS integration in LC architecture does not provide satisfying 

performance for each tested configuration (with GPS and GLONASS, with 

GNSS-derived yaw aiding, with motion constraints), showing large errors during 

GNSS outages; 

- The GNSS/INS integration in TC architecture shows better performance relative 

to LC architecture for each tested configuration; 

- Including GLONASS observations in the integrated system GPS/INS provides 

slight performance improvements for TC architecture in terms of position, 

velocity and azimuth estimation; 

- Including the yaw external aiding in the TC GG/INS 24 configuration improves 

significantly only the azimuth estimation; 

- Including the velocity constraints in the TC GG/INS 24 Y configuration slightly 

improves the estimation of position, velocity and azimuth; 

- The configurations TC GG/INS 24 YV and TC GG/INS 24 YVH provide similar 

results, with only a better altitude estimation of the last configuration. 
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Segment 3 

The segment 3 is approximately 2.5 km long and is travelled in about 3 minutes. The 

number of visible GPS satellites during the trajectory is presented in Figure 6-49; after 

some short partial GPS outages (few seconds) at the beginning of the path, the satellite 

visibility allows almost continuous GPS positioning. Only two short outages were 

encountered on the trajectory. 

Inclusion of GLONASS (Figure 6-50) further increases the number of available 

satellites, reducing the durations of the outages; the GPS solution availability is about 

81% and the GPS/GLONASS solution availability is 86%. 

 

Figure 6-49 – Vehicular Test: Number of Visible GPS Satellites on the Trajectory 

(Segment 3) 

 

Figure 6-50 – Vehicular Test: GPS/GLONASS Solution Availability on the 

Trajectory (Segment 3) 
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The trajectory obtained by integrating GPS and INS in LC approach is presented in 

Figure 6-51 (green line). During the beginning of the segment, the trajectory shows 

some disagreements with the reference, owing to the partial GPS outages. However, 

during the remaining part of the segment, with a good satellite visibility, the obtained 

trajectory is very close to the reference. Including the GLONASS measurements (purple 

line) yields a reduction of the initial disagreements, as expected. 

With the addition of the GNSS-derived yaw aiding and the motion constraints on 

velocity and height, the obtained trajectory (cyan line) is close to the reference during 

the whole segment. The Table 6-19 summarizes the error behavior of the last considered 

configuration (LC GPS/INS 21 YVH); the RMS position errors are about few meters, 

the maximum position error about 15 meters.  

 

Figure 6-51 – Vehicular Test: Trajectory of LC GPS/INS 21, LC GG/INS 21 and 

LC GG/INS 21 YVH Configurations (Segment 3) 

Table 6-19 – Vehicular Test: RMS and Maximum Errors of LC GG/INS 21 YVH 

Configuration (Segment 3) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 6,1 3,7 3,4 13,5 7,3 5,1 

Velocity (m/s) 0,3 0,5 0,1 1,6 1,9 0,4 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 1,0 1,0 1,5 2,2 2,3 7,6 
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A similar analysis is now carried out for the TC approach. The trajectory obtained 

integrating GPS and INS in TC approach is presented in Figure 6-52 (green line). In 

case of good visibility, the obtained trajectory is very close to the reference; some 

evident disagreements show up during the GPS outages at the beginning of the segment. 

Again, including the GLONASS measurements (purple line) yields a reduction of the 

above mentioned disagreements. Adding the GNSS-derived yaw aiding and the velocity 

and height motion constraints, the obtained trajectory (cyan line) is close to the 

reference during the whole segment. In the Table 6-20 the position, velocity and attitude 

errors of the TC GPS/INS 24 YVH configuration are summarized; the RMS position 

errors are about few meters, the maximum position error about 10 meters. 

 

Figure 6-52 – Vehicular Test: Trajectory of TC GPS/INS 23, TC GG/INS 24 and 

TC GG/INS 24 YVH Configurations (Segment 3) 

 

Table 6-20 – Vehicular Test: RMS and Maximum Errors of TC GG/INS 24 YVH 

Configuration (Segment 3) 

 RMS Error Maximum Error 

 East North Up East North Up 

Position (m) 6,2 5,7 5,5 8,6 11,5 9,9 

Velocity (m/s) 0,3 0,6 0,1 1,3 1,8 0,3 

 Roll Pitch Yaw Roll Pitch Yaw 

Attitude (deg) 1,0 1,0 2,4 2,3 2,0 6,9 
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Comparing the two best configurations, i.e. LC GPS/INS 21 YVH and TC GG/INS 24 

YVH, it can be noted that the obtained performances are quite similar: the first has 

slightly better performance in the altitude estimation, the second a smaller maximum 

horizontal position error. These differences are not meaningful, so in this relatively 

benign scenario the LC and TC approaches provide comparable results, as expected. 

To compare the considered configurations in LC and TC architectures, a bar chart of the 

RMS errors of position, velocity and attitude is shown in Figure 6-53. 

 

Figure 6-53 – Vehicular Test: Comparison between LC and TC Architectures in 

terms of Position and Velocity RMS Errors (Segment 3) 

The main remarks deduced from the errors overview in Figure 6-53 are: 

- In this relatively benign scenario the position performance of all the considered 

configurations are very similar; 

- The LC configurations provide slightly better altitude performance; 

- Including GLONASS observations in GPS/INS integration for both LC and TC 

architectures provides slight improvements in terms of position and velocity; 

- Including GNSS-derived yaw aiding and velocity/height constraints yields the 

reduction of velocity and azimuth errors, but no benefits in position RMS errors. 

 

6.3 Comparison between Pedestrian and Vehicular Test 

In this thesis two tests are considered and analyzed: a pedestrian test described in 

section 6.1 and a vehicular test described in section 6.2. It is interesting to compare the 
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results obtained in these cases, pointing out their operational and environmental 

differences. 

The pedestrian test is carried out mostly on the edge of Calgary‟s downtown core and so 

the GNSS visibility conditions are moderately difficult; moreover for this test a high 

GNSS rate is used (20 Hz), as typically used in pedestrian applications (Pahadia 2010). 

The vehicular test is carried out mostly in the downtown core and so the GNSS 

visibility conditions are often difficult; three segments of the test, representing different 

scenarios, are analyzed separately. The segment 1, with a maximum GPS outage of 1 

minute reduced to 30 seconds including GLONASS, can be considered a difficult 

scenario. The segment 2, with a maximum GPS outage of 1 minute not reduced by 

including GLONASS and with a low GG availability (about 50%), can be considered a 

very difficult scenario. The segment 3, with short GNSS outages and good solution 

availability (>80%), can be considered a not difficult scenario. 

In Table 6-21 some features of the tested scenarios are summarized, showing the GNSS 

solution availability and the duration of the longest outage in the GPS only and 

GPS/GLONASS cases. 

Table 6-21 – Comparison between Pedestrian and Vehicular Tests 

 
GPS 

Availability 

GPS 

Max Outage 

GG 

Availability 

GG 

Max Outage 

Pedestrian Test 

(20 Hz) 
82% 45 sec 90% 40 sec 

Vehicular 

Test 

(1 Hz) 

Segment 1 73% 60 sec 81% 30 sec 

Segment 2 53% 60 sec 55% 60 sec 

Segment 3 81% 10 sec 86% 8 sec 

 

To compare the solution of the integration GNSS/INS obtained in the different 

scenarios, the RMS position errors obtained with the configurations LC GG/INS 21 and 

TC GG/INS 24 are shown in Figure 6-54. 

The results obtained in segment 3 of the vehicular test are clearly the best owing to the 

benign environment, characterized by only short partial outages. The worst results are 

obtained in segment 2 of the vehicular test, characterized by long outages also in 

GPS/GLONASS case. The pedestrian test, carried out in a moderately difficult 

environment, has the lowest horizontal RMS error. 
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The LC approach in difficult scenario (segment 2) shows very large RMS position 

errors (yellow bar in the upper plot of Figure 6-54). Details about the performance of 

the considered configurations are in sections 6.1.4 and 6.2.3. 

 

Figure 6-54 – RMS Position Error of Configuration TC GG/INS 24 in Pedestrian 

and Vehicular Test 
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Chapter 7  Conclusions 

The main objective of this thesis is the performance assessment of the integrated 

navigation system consisting of a GNSS receiver and a low cost MEMS-based INS in 

urban environment for pedestrian and vehicular application. The motivations behind the 

GNSS/INS integration are the GNSS gaps in signal-degraded environment such as 

urban canyons. The recent enhancements of the Russian satellite system GLONASS 

suggest the combined use with GPS system in order to increase the GNSS availability; 

the pseudorange and Doppler observables are processed epoch by epoch in single point 

positioning. The main equipment includes the NovAtel GPS/GLONASS receiver 

ProPak-V3 and the MEMS-based Crista IMU from Cloud Cap Technology Inc. 

To assess the GNSS/INS performance, the loosely coupled and tightly coupled 

integration architectures are considered; the tight architecture is able to provide an 

integrated navigation solution in case of partial GNSS outage, i.e. when the number of 

visible satellites is insufficient to perform a GNSS positioning. For this reason the tight 

architecture is commonly used in difficult scenarios for satellite navigation as urban 

areas; however all the researches carried out in the recent years adopted only GPS 

system integrated with INS of different grades. One of the objectives of this research is 

to assess the benefits obtained using additional GLONASS satellites (in addition to GPS 

satellites) in urban navigation and to determine if the integration strategy plays a 

significant role, specifically if including GLONASS satellite may change significantly 

the role of loosely coupling in urban context. 

A possible approach to further improve the performance of the integrated GNSS/INS 

system consists in modeling properly the inertial sensor errors and estimating them in 

the Kalman filter; the estimated errors are used to bound the INS drift. In this context 

the inertial sensor errors are modeled with bias and scale factor terms. 

The urban environment is characterized by frequent GNSS outages; during a GNSS 

outage the inertial sensor errors are not continuously estimated and tend to grow rapidly 

(especially for low cost MEMS sensors). To bound the INS drift, especially in vehicular 

navigation, pseudo-measurements can be derived from knowledge of vehicle‟s motion 

(also referred to as motion constraints). To improve the azimuth estimation of the 

considered moving object, an algorithm for the direct observation of azimuth using 

GNSS measurements can be considered too. 
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In this work the effectiveness of the motion constraints and of the azimuth aiding are 

evaluated and pedestrian and vehicular tests are carried out in different operational 

environments. 

7.1 Conclusions 

The pedestrian test (analyzed in section 6.1) was carried out on the edge of downtown 

Calgary (Canada), characterized by areas with good satellite visibility (e.g. parking lot) 

and by areas with poor visibility (e.g. urban canyon). In case of GPS only positioning, 

the solution availability is about 80% and the maximum outage has a duration of about 

45 seconds; in case of combined GPS/GLONASS positioning, the solution availability 

rises to about 90% and the duration of the maximum outage is reduced to 40 seconds. 

These features make the environment a moderately difficult scenario. 

The main conclusions from the results obtained in this scenario are: 

- The GPS/INS integration in LC architecture provides satisfying performance 

only in the areas with good visibility or with brief GPS outages. During long 

outages the solution shows very large errors (several hundreds of meters), which 

are reduced when accurate INS sensor error modeling is enabled (i.e. including 

both bias and scale factor terms). 

- The GPS/INS integration in TC architecture provides a better solution than the 

LC case, but with large drift during the long GPS outages (about 100 meters). 

- Including GLONASS observations in the integrated system GPS/INS provides 

meaningful performance improvements in both LC and TC architectures for 

position and velocity estimation (in the LC case the maximum position error 

remains large, while is strongly reduced in TC case). 

- The GPS/GLONASS/INS integration in LC architecture and the GPS/INS 

integrations in TC architecture provide similar performance (in terms of RMS 

errors), suggesting that the former might be a good (and relatively simple) 

replacement for the latter. 

- Including velocity and height constraints to aid the GPS/GLONASS/INS 

integration produces significant performance improvements in both LC and TC 

architectures, which show very similar position and velocity RMS errors. 

 

The results obtained with motion constraints demonstrate the effectiveness of this 

strategy (usually applied in vehicular context) in a particular pedestrian application too; 
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however it must be pointed out that these results are obtained in a specific arrangement 

with the IMU fixed on a box, carried on the back of a pedestrian (which somehow acts 

as a vehicle). More tests are necessary to demonstrate a more general effectiveness of 

this method in the pedestrian context. 

 

The vehicular test (analyzed in section 6.2) was carried out through the core of 

downtown Calgary (Canada) and shows very difficult scenarios for satellite navigation, 

with frequent partial/total GNSS outages of several seconds. Specifically, three test 

segments, each representing a different operational scenarios, are identified: 

- A not difficult scenario, characterized by short GNSS outages (few seconds) and 

good GNSS solution availability (>85%), 

- A difficult scenario, characterized by GPS outage of 60 seconds (reduced to 30 

seconds when including GLONASS observations) and a GPS solution 

availability about 70% (increased to more than 80% when including 

GLONASS), 

- A very difficult scenario, characterized by outages of 60 seconds and solution 

availability about 50% in the GPS/GLONASS case. 

 

The main remarks deduced analyzing the results obtained in these scenarios are: 

- Under benign operational conditions the GPS/INS integration in both LC and TC 

architectures provides satisfying performance; adding GLONASS satellites and 

the considered aids slightly improves the performance. 

- In difficult scenario 

o The GPS/INS integration in LC architecture shows large errors during 

the long outage, while in TC approach the errors are significantly 

smaller. 

o Including GLONASS observations provides meaningful performance 

improvements for both LC and TC architectures and in terms of position, 

velocity and azimuth estimation.  

o The GPS/GLONASS/INS integration in LC architecture and the 

GPS/INS integration in TC approach provide very similar performance 

(in terms of RMS errors); this might change significantly the role of 

loosely coupling which could be preferred to tight approach in urban 

navigation owing to its relative implementation simplicity. 
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o Including the GNSS-derided azimuth aiding and the velocity/height 

constraints produces significant improvements of LC and TC 

performance in terms of position, velocity and azimuth and the results 

with the two cases are very similar. 

- In very difficult scenario 

o The GNSS/INS integration in LC architecture does not provide satisfying 

performance for each tested configuration (with GPS and GLONASS, 

with GNSS-derived yaw aiding, with motion constraints), showing large 

errors during GNSS outages. 

o The GNSS/INS integration in TC architecture shows better performance 

relative to LC architecture for each tested configuration. Including 

GLONASS observations in the integrated system GPS/INS in TC 

architecture provides slight performance improvements in terms of 

position, velocity and azimuth estimation; including the azimuth external 

aiding and the velocity/height constraints only slightly further improves 

the navigation parameter estimation. 

 

7.2 Future Work 

The following research topics would be logical extensions to the work presented herein: 

 The PPP technique uses precise satellite orbit and clock products to improve the 

accuracy of the un-differenced GNSS positioning; similarly the performance of 

the integrated system GNSS/INS(MEMS) can potentially be improved by using 

the PPP technique. 

 The extended Kalman filter performance strongly relies on the knowledge of the 

system models and noise properties; the use of an adaptive Kalman filter may 

improve the filtering performance and can be investigated in urban scenario. 

 In vehicular navigation an odometer can be used to aid the velocity estimation in 

addition to the motion constraints. 

 Map-matching techniques can be used to generate motion constraints, helping to 

keep the INS errors bounded during GNSS outages. 

 Including, in the GNSS/INS integrated system, measurements from the rising 

European GNSS system Galileo or from the Japanese QZSS can potentially 

improve the integrated performance. 
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